9.已知數(shù)列{an}中,a3=2,a6=1,若{ $\frac{1}{1+{a}_{n}}$ }是等差數(shù)列,則a11等于( 。
A.0B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 利用等差數(shù)列通項(xiàng)公式列出方程組,求出$\frac{1}{1+{a}_{1}}$=$\frac{1}{6}$,d=$\frac{1}{12}$,由此能求出a11的值.

解答 解:∵數(shù)列{an}中,a3=2,a6=1,{ $\frac{1}{1+{a}_{n}}$ }是等差數(shù)列,
∴$\frac{1}{1+{a}_{3}}$=$\frac{1}{2}$,$\frac{1}{1+{a}_{6}}$=1,
∴$\left\{\begin{array}{l}{\frac{1}{1+{a}_{1}}+2d=\frac{1}{2}}\\{\frac{1}{{1+a}_{1}}+5d=1}\end{array}\right.$,解得$\frac{1}{1+{a}_{1}}$=$\frac{1}{6}$,d=$\frac{1}{12}$,
∴$\frac{1}{1+{a}_{11}}$=$\frac{1}{6}+10×\frac{1}{12}$=1,
解得a11=0.
故選:A.

點(diǎn)評 本題考查數(shù)列的第11項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在極坐標(biāo)系中,點(diǎn)A和點(diǎn)B的極坐標(biāo)分別為(2,$\frac{π}{3}$),(3,0),O為極點(diǎn),求:
(1)|AB|;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,c=$\sqrt{3}$,B=45°,C=60°,則b=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知sin(α+$\frac{π}{3}$)=-$\frac{1}{2}$,α∈(0,π),則cosα=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,圓C2:x2+y2=2經(jīng)過橢圓C1的焦點(diǎn).
(1)求C1的方程;
(2)過點(diǎn)M(-1,0)的直線l與曲線C1,C2自上而下依次交于點(diǎn)A,B,C,D,若$\overrightarrow{AB}$=$\overrightarrow{CD}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,角A、B、C所對的邊分別是a、b、c,若$a=\sqrt{6}$,b=2,A=60°,則B=( 。
A.30°B.45°C.135°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前項(xiàng)和為Sn,且a3=7,S3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求{an}的前項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,m)$,且$\overrightarrow a∥\overrightarrow b$,則m等于( 。
A.4B.3C.-4D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)$f(x)=Asin(ωx+φ),(ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則A,ω,φ的值分別是( 。
A.1,$2,-\frac{π}{6}$B.2,$2,-\frac{π}{3}$C.1,$4,-\frac{π}{6}$D.2,$4,\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊答案