18.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,m)$,且$\overrightarrow a∥\overrightarrow b$,則m等于( 。
A.4B.3C.-4D.-3

分析 利用平面向量平行的性質(zhì)直接求解.

解答 解:∵平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(-2,m)$,且$\overrightarrow a∥\overrightarrow b$,
∴$\frac{-2}{1}=\frac{m}{2}$,
解得m=-4.
故選:C.

點評 本題考查向量平行的性質(zhì)等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=sinxcosx-$\sqrt{3}$cos(x+π)cosx(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若函數(shù)y=f(x)的圖象按$\overrightarrow$=($\frac{π}{4}$,$\frac{\sqrt{3}}{2}$)平移后得到函數(shù)y=g(x)的圖象,求y=g(x)在[0,$\frac{π}{4}$]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}中,a3=2,a6=1,若{ $\frac{1}{1+{a}_{n}}$ }是等差數(shù)列,則a11等于( 。
A.0B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在鈍角△ABC中a<b<c,且a=2,b=3,則c的取值范圍是$(\sqrt{13},5)$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.i為虛數(shù)單位,則${({\frac{1+i}{1-i}})^{2013}}$=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(2,1)
求:(1)|$\overrightarrow{a}+\overrightarrow$|
(2)求x的值使x$\overrightarrow{a}$+3$\overrightarrow$與3$\overrightarrow{a}$-2$\overrightarrow$為平行向量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,點(an+2,Sn+1)在一次函數(shù)圖象y=4x-5上,其中n∈N*.令bn=an+1-2an,且a1=1.
(1)求數(shù)列{bn}通項公式;
(2)求數(shù)列{nbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點.
(1)求證:FG∥平面BED
(2)求三棱錐B-DAE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求曲線y=$\sqrt{x}$,x+y=6,y=-$\frac{1}{4}$x圍成的平面圖形的面積.

查看答案和解析>>

同步練習冊答案