分析 根據(jù)遞推關(guān)系,分別求出b1,b2,b3,b4的值,由此猜想bn=2n+1,并用數(shù)學(xué)歸納法證明即可.
解答 解:a1=2,an+1=$\frac{2}{{a}_{n}+1}$,bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,n∈N,
當(dāng)n=1時(shí),b1=$\frac{|2+2|}{|2-1|}$=4=22,a2=$\frac{2}{2+1}$=$\frac{2}{3}$,
當(dāng)n=2時(shí),b2=$\frac{|\frac{2}{3}+2|}{|\frac{2}{3}-1|}$=8=23,a3=$\frac{2}{\frac{2}{3}+1}$=$\frac{6}{5}$,
當(dāng)n=3時(shí),b3=|$\frac{\frac{6}{5}+2}{\frac{6}{5}-1}$|=16=24,a4=$\frac{2}{\frac{6}{5}+1}$=$\frac{10}{11}$,
則b3=32=24,
由此猜想bn=2n+1,
用數(shù)學(xué)歸納法證明,①當(dāng)n=1時(shí),成立,
②假設(shè)當(dāng)n=k時(shí)成立,即bk+1=2k+2,
∵ak+1=$\frac{2}{{a}_{k}+1}$,bk=|$\frac{{a}_{k}+2}{{a}_{k}-1}$|,
∴bk+1=|$\frac{{a}_{k+1}+2}{{a}_{k+1}-1}$|=|$\frac{\frac{2}{{a}_{k}+1}+2}{\frac{2}{{a}_{k}+1}-1}$|=|$\frac{2({a}_{k}+2)}{{a}_{k}-1}$|=2bk=2k+2,
故當(dāng)n=k+1時(shí)猜想成立,
由①②可知,bn=2n+1,n∈N*.
故答案為:2n+1,n∈N*.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,猜想數(shù)列的通項(xiàng)公式,用數(shù)學(xué)歸納法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{5\sqrt{11}}}{18}$ | B. | 2 | C. | 4 | D. | $\frac{{5\sqrt{11}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
B. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 | |
C. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
D. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com