15.若復(fù)數(shù)z滿足z2=$\frac{3}{4}$-i(i為虛數(shù)單位),則z的模為$\frac{\sqrt{5}}{2}$.

分析 根據(jù)復(fù)數(shù)模的定義,直接求模即可.

解答 解:∵z2=$\frac{3}{4}$-i,
∴|z|2=|$\frac{3}{4}$-i|=$\sqrt{{(\frac{3}{4})}^{2}{+(-1)}^{2}}$=$\frac{5}{4}$,
∴z的模為|z|=$\frac{\sqrt{5}}{2}$.
故答案為:$\frac{\sqrt{5}}{2}$.

點(diǎn)評(píng) 本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,以及復(fù)數(shù)模的計(jì)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)(x,y)滿足$\left\{\begin{array}{l}2x-y-1≥0\\ x+y-5≤0\\ x-2y+1≤0\end{array}$,向量$\overrightarrow a$=(1,-1),則$\overrightarrow a$•$\overrightarrow{OP}$的最大值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,直棱柱ABC-A1B1C1中,AB=AC=2,AA1=BC=2$\sqrt{3}$,E是AA1中點(diǎn),D是AC的中點(diǎn),M是BB1上一點(diǎn),若DM∥平面B1CE,則$\frac{BM}{M{B}_{1}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.判斷下列方程是否表示圓,若是,求出圓心和半徑.
(1)x2+y2-x+$\frac{1}{4}$=0;
(2)x2+y2+20x+162=0;
(3)x2+y2+4mx-2y+5m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)a1=2,an+1=$\frac{2}{{a}_{n}+1}$,bn=|$\frac{{a}_{n}+2}{{a}_{n}-1}$|,n∈N*,則數(shù)列{bn}的通項(xiàng)公式bn=2n+1,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某家庭打算用10年時(shí)間儲(chǔ)蓄20萬(wàn)元購(gòu)置一套商品房,為此每年需存銀行數(shù)額相同的專款,年利率4%,按復(fù)利計(jì)算,求每年應(yīng)存入銀行多少錢?(參考數(shù)據(jù);1.0410≈1.480,1.049≈1.423)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.?dāng)?shù)列通項(xiàng)an=$\frac{n-\sqrt{97}}{n-\sqrt{98}}$,前30項(xiàng)中最大項(xiàng)和最小項(xiàng)分別是$\frac{10-\sqrt{97}}{10-\sqrt{98}}$;$\frac{9-\sqrt{97}}{9-\sqrt{98}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知3x=2,3y=4,3z=8,則x,y,z為( 。
A.等差數(shù)列B.等比數(shù)列
C.既是等差,又是等比數(shù)列D.都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\sqrt{3}π$B.$2\sqrt{3}π$C.$({3+\sqrt{3}})π$D.$({3+2\sqrt{3}})π$

查看答案和解析>>

同步練習(xí)冊(cè)答案