A. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
B. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 | |
C. | 函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱 | |
D. | 函數(shù)f(x)在區(qū)間($\frac{π}{2},π$)內(nèi)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 |
分析 利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值,誘導(dǎo)公式化簡(jiǎn)已知可得f(x)=$\sqrt{2}$cos2x,利用正弦函數(shù)的性質(zhì)求出單調(diào)遞增區(qū)間和對(duì)稱軸即可得解.
解答 解:∵f(x)=cos(2x+$\frac{π}{4}$)+sin(2x+$\frac{π}{4}$)=$\sqrt{2}$sin(2x+$\frac{π}{4}$+$\frac{π}{4}$)=$\sqrt{2}$sin(2x+$\frac{π}{2}$)=$\sqrt{2}$cos2x,
∴由2x=kπ,k∈Z,可解得其對(duì)稱軸為:x=$\frac{kπ}{2}$,k∈Z,可得:當(dāng)k=1時(shí),其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱;
由2kπ+π<2x<2kπ+2π,k∈Z,可解得其單調(diào)遞增區(qū)間為:(kπ+$\frac{π}{2}$,kπ+π),k∈Z,可得:當(dāng)k=0時(shí),函數(shù)f(x)在區(qū)間($\frac{π}{2}$,π)內(nèi)單調(diào)遞增.
故選:B.
點(diǎn)評(píng) 本題主要考查了兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值,誘導(dǎo)公式以及正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | ($\frac{1}{2}$,+∞}) | C. | ($\sqrt{2}$,+∞) | D. | ($\frac{{\sqrt{2}}}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}π$ | B. | $2\sqrt{3}π$ | C. | $({3+\sqrt{3}})π$ | D. | $({3+2\sqrt{3}})π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com