11.設(shè)$\overrightarrow{a}$,$\overrightarrow$是平面上的兩個(gè)單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{5}$.若m∈R,則|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

分析 根據(jù)向量的數(shù)量積的運(yùn)算法則和二次函數(shù)的性質(zhì)即可求出即可.

解答 解:設(shè)$\overrightarrow{a}$,$\overrightarrow$是平面上的兩個(gè)單位向量,
則|$\overrightarrow{a}$|=1,|$\overrightarrow$|=1,
∵$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{5}$,
∴|$\overrightarrow{a}$+m$\overrightarrow$|2=|$\overrightarrow{a}$|2+m2|$\overrightarrow$|2+2m$\overrightarrow{a}$•$\overrightarrow$=1+m2+$\frac{6}{5}$m=(m+$\frac{3}{5}$)2+$\frac{16}{25}$,
當(dāng)m=-$\frac{3}{5}$時(shí),|$\overrightarrow{a}$+m$\overrightarrow$|2有最小值$\frac{16}{25}$,
∴|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是$\frac{4}{5}$,
故選:C

點(diǎn)評(píng) 本題考查了向量的數(shù)量積的運(yùn)算和二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z滿足z•(2+i)=i,i為虛數(shù)單位,則|$\overline{z}$|的值為( 。
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.1D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若關(guān)于x的方程e2x+aex+1=0有解,則實(shí)數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線與拋物線交于A、B兩點(diǎn),若|AB|=6,則線段AB的中點(diǎn)M的橫坐標(biāo)為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)i是虛數(shù)單位,復(fù)數(shù)$z=\frac{{2{i^3}}}{1-i}$,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=(x2+ax-a)•e1-x,其中a∈R.
(Ⅰ)求函數(shù)f'(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)證明:a≥0是函數(shù)f(x)存在最小值的充分而不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,-2).則與$\overrightarrow{a}$+2$\overrightarrow$垂直的向量可以是( 。
A.(3,2)B.(3,-2)C.(4,6)D.(4,-6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知集合A={(x,y)|$\frac{|x|}{3}$+$\frac{|y|}{2}$≤1},B={(x,y)|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$≤1},則命題“p:(x,y)∈A”是命題“q:(x,y)∈B”的充分不必要條件.(填:“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤4\end{array}\right.$,則z=lny-lnx的最大值是ln3.

查看答案和解析>>

同步練習(xí)冊(cè)答案