19.已知拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)F的直線與拋物線交于A、B兩點(diǎn),若|AB|=6,則線段AB的中點(diǎn)M的橫坐標(biāo)為( 。
A.2B.4C.5D.6

分析 先根據(jù)拋物線方程求出p的值,再由拋物線的性質(zhì)可得到答案.

解答 解:∵拋物線y2=4x,∴p=2,
設(shè)經(jīng)過點(diǎn)F的直線與拋物線相交于A、B兩點(diǎn),
其橫坐標(biāo)分別為x1,x2,利用拋物線定義,
AB中點(diǎn)橫坐標(biāo)為x0=$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(|AB|-p)=2,
故選A.

點(diǎn)評(píng) 本題考查拋物線的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱含條件,積累解題方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:
其中一個(gè)數(shù)字被污損.
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)成語知識(shí)的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的時(shí)間y(單位:小時(shí))與年齡x(單位:歲),并制作了對(duì)照表(如表所示)
年齡x(歲)20304050
周均學(xué)習(xí)成語知識(shí)時(shí)間y(小時(shí))2.5344.5
由表中數(shù)據(jù),試求線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并預(yù)測(cè)年齡為55歲觀眾周均學(xué)習(xí)成語知識(shí)時(shí)間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=(x-\frac{1}{x})sinx$(-π≤x≤π且x≠0)的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知△ABC中,角A,B,C所對(duì)的邊依次為a,b,c,其中b=2.
(Ⅰ)若asin2B=$\sqrt{3}$bsinA,求B;
(Ⅱ)若a,b,c成等比數(shù)列,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)x,y∈R,則“x≠1或y≠1”是“xy≠1”的( 。
A.充分不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率$e=\frac{{\sqrt{3}}}{2}$.且經(jīng)過點(diǎn)(0,1),C與x軸交于A,B兩點(diǎn),以AB為直徑的圓記為C1,P是C1上的異于A,B的點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若PA與橢圓C交于點(diǎn)M,且滿足|PB|=2|OM|,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$\overrightarrow{a}$,$\overrightarrow$是平面上的兩個(gè)單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{3}{5}$.若m∈R,則|$\overrightarrow{a}$+m$\overrightarrow$|的最小值是( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:
B餐廳分?jǐn)?shù)頻數(shù)分布表
分?jǐn)?shù)區(qū)間頻數(shù)
[0,10)2
[10,20)3
[20,30)5
[30,40)15
[40,50)40
[50,60]35
(Ⅰ)在抽樣的100人中,求對(duì)A餐廳評(píng)分低于30的人數(shù);
(Ⅱ)從對(duì)B餐廳評(píng)分在[0,20)范圍內(nèi)的人中隨機(jī)選出2人,求2人中恰有1人評(píng)分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對(duì)于數(shù)列{an},定義Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?請(qǐng)說明理由;
(2)若a1=3,${T_n}={6^n}-1$,求數(shù)列{an}的通項(xiàng)公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求證:“{an}為等差數(shù)列”的充要條件是“{an}的前4項(xiàng)為等差數(shù)列,且{bn}為等差數(shù)列”.

查看答案和解析>>

同步練習(xí)冊(cè)答案