分析 (Ⅰ)先求導(dǎo),再由導(dǎo)函數(shù)為0,解得即可;
(Ⅱ)根據(jù)(Ⅰ)分類討論,分別利用導(dǎo)數(shù)和函數(shù)的最值的關(guān)系以及充分不必要條件的定義即可證明.
解答 解:(Ⅰ)由f(x)=(x2+ax-a)•e1-x,
得f′(x)=(2x+a)e1-x-(x2+ax-a)•e1-x=-[x2+(a-2)x-2a]•e1-x=-(x+a)(x-2)•e1-x,
令f′(x)=0,得x=2,或x=-a.
所以當(dāng)a=-2時(shí),函數(shù)f′(x)有且只有一個(gè)零點(diǎn):x=2;
當(dāng)a≠-2時(shí),函數(shù)f′(x)有兩個(gè)相異的零點(diǎn):x=2,x=-a.
(Ⅱ)證明:①當(dāng)a=-2時(shí),f′(x)≤0恒成立,此時(shí)函數(shù)f(x)在(-∞,+∞)上單調(diào)遞減,
所以,函數(shù)f(x)無(wú)極值.
②當(dāng)a>-2時(shí),f′(x),f(x)的變化情況如下表:
x | (-∞,-a) | -a | (-a,2) | 2 | (2,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
x | (-∞,2) | 2 | (2,5) | 5 | (5,+∞) |
f′(x) | - | 0 | + | 0 | - |
f(x) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的極值和最值的關(guān)系,考查了學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
B餐廳分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com