如圖,已已知AB圓O的直徑,C、D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧BD的中點(diǎn);
(Ⅱ)求證:BF=FG.

【答案】分析:(I)要證明C是劣弧BD的中點(diǎn),即證明弧BC與弧CD相等,即證明∠CAB=∠DAC,根據(jù)已知中CF=FG,AB是圓O的直徑,CE⊥AB于E,我們易根據(jù)同角的余角相等,得到結(jié)論.
(II)由已知及(I)的結(jié)論,我們易證明△BFC及△GFC均為等腰三角形,即CF=BF,CF=GF,進(jìn)而得到結(jié)論.
解答:解:(I)∵CF=FG
∴∠CGF=∠FCG
∴AB圓O的直徑

∵CE⊥AB


∴∠CBA=∠ACE
∵∠CGF=∠DGA

∴∠CAB=∠DAC
∴C為劣弧BD的中點(diǎn)(5分)
(II)∵
∴∠GBC=∠FCB
∴CF=FB
同理可證:CF=GF
∴BF=FG(10分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)圓周角定理及其推理,同(等)角的余角相等,其中根據(jù)AB是圓O的直徑,CE⊥AB于E,找出要證明相等的角所在的直角三角形,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-24,已知AB是⊙O的直徑,CD切⊙O于E,AC⊥CD,BD⊥CD,垂足分別為C、D.

求證:AB是以CD為直徑的圓的切線.

圖2-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省洛陽(yáng)市偃師高中高三(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已已知AB圓O的直徑,C、D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧BD的中點(diǎn);
(Ⅱ)求證:BF=FG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省重點(diǎn)中學(xué)協(xié)作體高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

如圖,已已知AB圓O的直徑,C、D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧BD的中點(diǎn);
(Ⅱ)求證:BF=FG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省部分重點(diǎn)中學(xué)協(xié)作體高考數(shù)學(xué)模擬考試試卷(理科)(解析版) 題型:解答題

如圖,已已知AB圓O的直徑,C、D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧BD的中點(diǎn);
(Ⅱ)求證:BF=FG.

查看答案和解析>>

同步練習(xí)冊(cè)答案