設(shè)數(shù)列滿足:,且當(dāng)時(shí),

(Ⅰ) 比較的大小,并證明你的結(jié)論;

(II) 若,其中,證明:

 

 

 

 

 

【答案】

 解:(I)由于,則

…………………………………6分

(II)由于.

…………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)已知遞增數(shù)列滿足:, ,且、成等比數(shù)列。(I)求數(shù)列的通項(xiàng)公式;(II)若數(shù)列滿足: ,且。①證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;②設(shè),數(shù)列項(xiàng)和為, ,。當(dāng)時(shí),試比較A與B的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線,數(shù)列的首項(xiàng),且

當(dāng)時(shí),點(diǎn)恒在曲線上,數(shù)列{}滿足

(1)試判斷數(shù)列是否是等差數(shù)列?并說明理由;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè)數(shù)列滿足,試比較數(shù)列的前項(xiàng)和的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽(yáng)區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分14分)

數(shù)列,)由下列條件確定:①;②當(dāng)時(shí),滿足:當(dāng)時(shí),,;當(dāng)時(shí),,.

(Ⅰ)若,,寫出,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)在數(shù)列中,若(,且),試用表示

(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列滿足,,

(其中為給定的不小于2的整數(shù)),求證:當(dāng)時(shí),恒有.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市嘉定區(qū)高三年級(jí)第一次質(zhì)量調(diào)研理科數(shù)學(xué) 題型:解答題

(本題滿分16分)定義,…,的“倒平均數(shù)”為).已知數(shù)列項(xiàng)的“倒平均數(shù)”為,記).

(1)比較的大;

(2)設(shè)函數(shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立?若存在,求出最大的實(shí)數(shù);若不存在,說明理由.

(3)設(shè)數(shù)列滿足,),),且是周期為的周期數(shù)列,設(shè)項(xiàng)的“倒平均數(shù)”,求

 

查看答案和解析>>

同步練習(xí)冊(cè)答案