18.在區(qū)間(0,4),上任取一實(shí)數(shù)x,則2<2x-1<4的概率是$\frac{1}{4}$.

分析 解不等式,求出x的范圍,根據(jù)區(qū)間的長度的比值求出滿足條件的概率即可.

解答 解:解不等式2<2x-1<4,
得:2<x<3,
所以$P=\frac{3-2}{4-0}=\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評 本題主要考查幾何概型的概率的計算,根據(jù)不等式的性質(zhì)求出不等式的等價條件是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個蜂巢里有1只蜜蜂.第1天,它飛出去找回了2個伙伴;第2天,3只蜜蜂飛出去,各自找回了2個伙伴…如果這個找伙伴的過程繼續(xù)下去,第5天所有的蜜蜂都?xì)w巢后,蜂巢中一共有243只蜜蜂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且F2為拋物線C2:y2=2px的焦點(diǎn),C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長分別為2$\sqrt{2}$和4,求C1和C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x,y都是正數(shù),且x+y=3,則$\frac{4}{x+1}+\frac{1}{y+1}$的最小值為$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一組數(shù)據(jù)如表:
x12345
y1.31.92.52.73.6
(1)畫出散點(diǎn)圖;
(2)根據(jù)下面提供的參考公式,求出回歸直線方程,并估計當(dāng)x=8時,y的值.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,
 超市 A B C D E F G
 廣告費(fèi)支出x 1 2 4 6 11 13 19
 銷售額y 19 32 40 44 52 53 54
(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程;$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\widehat{y}$=-0.17x2+5x+20.
經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適.并用此模型預(yù)測A超市廣告費(fèi)支出為3萬元時的銷售額,
參考數(shù)據(jù)及公式:$\overline{x}$=8,$\overline{y}$=42.$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=708,
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$為奇函數(shù),則f-1(x)=2的解為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow a=(1,x),\overrightarrow b=(x-1,2)$,若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)x的值為(  )
A.2B.-1C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上是單調(diào)遞減的,則實(shí)數(shù)a的取值范圍是( 。
A.a≤-3B.a≥-3C.a≤5D.a≥5

查看答案和解析>>

同步練習(xí)冊答案