【題目】《宋人撲棗圖軸》是作于宋朝的中國古畫,現(xiàn)收藏于中國臺北故宮博物院.該作品簡介:院角的棗樹結實累累,小孩群來攀扯,枝椏不;蝿,粒粒棗子搖落滿地,有的牽起衣角,有的捧著盤子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個動作,四人每人模仿一個動作.若他們采用抽簽的方式來決定誰模仿哪個動作,則甲不模仿且乙不模仿的概率是(

A.B.C.D.

【答案】B

【解析】

依題意,基本事件的總數(shù)為,設事件表示甲不模仿“爬”且乙不模仿“扶”,則事件包含個基本事件,故可求.

解:依題意,基本事件的總數(shù)為

設事件表示甲不模仿“爬”且乙不模仿“扶”,

若甲模仿“扶”,則包含個基本事件;

若甲模仿“撿”或“頂”則包含個基本事件,

綜上包含個基本事件,

所以

故選:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校開設了素描攝影剪紙書法四門選修課,要求每位同學都要選擇其中的兩門課程.已知甲同學選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯誤的是(

A.丙有可能沒有選素描B.丁有可能沒有選素描

C.乙丁可能兩門課都相同D.這四個人里恰有2個人選素描

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55.下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖;

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.

非體育迷

體育迷

合計

合計

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?

2)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知“超級體育迷”中有2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.

附:參考公式:.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,,AB的垂直平分線分別交ABACD、E(圖一),沿DE折起,使得平面平面BDEC(圖二).

1)若FAB的中點,求證:平面ADE

2PAC上任意一點,求證:平面平面PBE

3PAC上一點,且平面PBE,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左、右焦點分別為、,過右焦點的直線與橢圓交于,兩點.時,是橢圓的下頂點,且的周長為6.

1)求橢圓的方程;

2)設橢圓的右頂點為,直線、分別與直線交于、點,證明:當變化時,以線段為直徑的圓與直線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面,為等邊三角形,.

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓的左、右焦點,離心率為,是平面內兩點,滿足,線段的中點在橢圓上,周長為12.

1)求橢圓的方程;

2)若過的直線與橢圓交于,求(其中為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網(wǎng)點人員流動性也較強,各快遞公司需要經(jīng)常招聘快遞員,保證業(yè)務的正常開展.下面是50天內甲、乙兩家快遞公司的快遞員的每天送貨單數(shù)統(tǒng)計表:

送貨單數(shù)

30

40

50

60

天數(shù)

10

10

20

10

5

15

25

5

已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.

(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數(shù)的函數(shù)關系式;

(2)若將頻率視為概率,回答下列問題:

記甲快遞公司的快遞員的日工資為(單位:元),求的分布列和數(shù)學期望;

小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xlnxx+1,gx)=exaxaR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求證:

查看答案和解析>>

同步練習冊答案