12.兩個(gè)實(shí)習(xí)生每人加工一個(gè)零件,加工為一等品的概率分別為$\frac{2}{3}$和$\frac{1}{2}$,兩個(gè)零件是否加工為一等品相互獨(dú)立,則這兩個(gè)零件中至少有一個(gè)加工為一等品的概率為( 。
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 這兩個(gè)零件中至少有一個(gè)加工為一等品對(duì)立事件是兩個(gè)零件都沒有加工為一等品,由此利用對(duì)立事件概率公式求解即可.

解答 解:兩個(gè)實(shí)習(xí)生每人加工一個(gè)零件,加工為一等品的概率分別為$\frac{2}{3}$和$\frac{1}{2}$,
兩個(gè)零件是否加工為一等品相互獨(dú)立,
∴這兩個(gè)零件中至少有一個(gè)加工為一等品的概率為:
p=1-$\frac{2}{3}×\frac{1}{2}$=$\frac{5}{6}$.
故選:B.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意相互獨(dú)立事件概率乘法公式、對(duì)立事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱椎P-ABC中,D,E,F(xiàn)分別是棱PC、AC、AB的中點(diǎn),且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)當(dāng)a=0時(shí),判斷函數(shù)f(x)的奇偶性;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在圓的方程x2+y2+Dx+Ey+F=0中,若D2=E2>4F,則圓的位置滿足( 。
A.截兩坐標(biāo)軸所得弦的長度相等B.與兩坐標(biāo)軸都相切
C.與兩坐標(biāo)軸相離D.上述情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在$\widehat{AB}$上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知隨機(jī)變量ξ~B(n,p),若$E(ξ)=\frac{5}{3}$,$D(ξ)=\frac{10}{9}$,則n=5,p=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.二手車經(jīng)銷商小王對(duì)其所經(jīng)營的某一型號(hào)二手汽車的使用年數(shù)x(0<x≤10)與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下的對(duì)應(yīng)數(shù)據(jù):
使用年數(shù)246810
售價(jià)16139.574.5
(1)若這兩個(gè)變量呈線性相關(guān)關(guān)系,試求y關(guān)于x的回歸直線方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收購使用年限不超過10年的二手車,且每輛該型號(hào)汽車的收購價(jià)格為ω=0.03x2-1.81x+16.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時(shí),小王銷售一輛該型號(hào)汽車所獲得的利潤L(x)最大?
(銷售一輛該型號(hào)汽車的利潤=銷售價(jià)格-收購價(jià)格)
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求橢圓C的方程;
(2)已知⊙A1:(x+2)2+y2=12和點(diǎn)A2(2,0),求過點(diǎn)A2且與⊙A1相切的動(dòng)圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實(shí)數(shù)x>0,y>0,且滿足x+y=1,則$\frac{2}{x}$+$\frac{x}{y}$的最小值為2+2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案