2.如圖,在三棱椎P-ABC中,D,E,F(xiàn)分別是棱PC、AC、AB的中點,且PA⊥面ABC.
(1)求證:PA∥面DEF;
(2)求證:面BDE⊥面ABC.

分析 (1)由線面平行的判定定理可知,只須證PA與平面DEF內(nèi)的某一條直線平行即可,由已知及圖形可知應(yīng)選擇DE,由三角形的中位線的性質(zhì)易知:DE∥PA,從而問題得證;
(2)由面面垂直的判定定理可知,只須證兩平中的某一直線與另一個平面垂直即可,注意題中已知了線段的長度,那就要注意利用勾股定理的逆定理來證明直線與直線的垂直;通過觀察可知:應(yīng)選擇證DE垂直平面ABC較好,由(1)可知:DE⊥AC,再就只須證DE⊥EF即可;這樣就能得到DE⊥平面ABC,又DE?平面BDE,從面而有平面BDE⊥平面ABC.

解答 證明:(1)因為D,E分別為PC,AC的中點,所以DE∥PA.
又因為PA?平面DEF,DE?平面DEF,所以直線PA∥平面DEF.
(2)因為D,E,F(xiàn)分別人棱PC,AC,AB的中點,PA=6,BC=8,所以DE∥PA,DE=$\frac{1}{2}$PA=3,EF=$\frac{1}{2}$BC=4.
又因為DF=5,故DF2=DE2+EF2,所以∠DEF=90.,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.
因為AC∩EF=E,AC?平面ABC,EF?平面ABC,所以DE⊥平面ABC.
又DE?平面BDE,所以平面BDE⊥平面ABC.

點評 本題考查線面平行的判定,考查平面與平面垂直的判定,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知銳角α終邊上一點A的坐標(biāo)為(2sin3,-2cos3),則角α的弧度數(shù)為( 。
A.3B.π-3C.3-$\frac{π}{2}$D.$\frac{π}{2}$-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若$α∈(0,\frac{π}{2})$,且${sin^2}α+cos2α=\frac{1}{4}$,則tanα的值等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2x3+3x2+a,其中a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的圖象與直線y=12x相切,求a的值;
(3)是否存在相異的正實數(shù)m,n,使得f(m)=12m,f(n)=12n?若存在,試確定實數(shù)a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點和短軸端點都在圓x2+y2=4上.
(1)求橢圓C的方程;
(2)已知點P(-3,2),若斜率為1的直線l與橢圓C相交于A,B兩點,且△ABP是以AB為底邊的等腰三角形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知角α的終邊經(jīng)過點(-4,-3),那么tanα等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若正數(shù)x,y滿足2x+y-3=0,則$\frac{2}{x}$+$\frac{1}{y}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出下列命題:①零向量沒有方向;②若兩個空間向量相等,則它們的起點相同,終點也相同;③若空間向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;④若空間向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$滿足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,則$\overrightarrow{m}$=$\overrightarrow{p}$;⑤空間中任意兩個單位向量必相等.其中正確命題的個數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.兩個實習(xí)生每人加工一個零件,加工為一等品的概率分別為$\frac{2}{3}$和$\frac{1}{2}$,兩個零件是否加工為一等品相互獨立,則這兩個零件中至少有一個加工為一等品的概率為(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案