17.已知a,b,c∈R,c≠0,n∈N*,下列使用類比推理恰當(dāng)?shù)氖牵ā 。?table class="qanwser">A.“若a•5=b•5,則a=b”類比推出“若a•0=b•0,則a=b”B.“(ab)n=anbn”類比推出“(a+b)n=an+bn”C.“(a+b)•c=ac+bc”類比推出“(a•b)•c=ac•bc”D.“(a+b)•c=ac+bc”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{c}$”

分析 判斷一個(gè)推理過(guò)程是否是類比推理關(guān)鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個(gè)特殊的推理過(guò)程.另外還要看這個(gè)推理過(guò)程是否符合實(shí)數(shù)的性質(zhì).

解答 解:對(duì)于A:“若a•5=b•5,則a=b”類推出“若a•0=b•0,則a=b”是錯(cuò)誤的,因?yàn)?乘任何數(shù)都等于0,
對(duì)于B:“(ab)n=anbn”類推出“(a+b)n=an+bn”是錯(cuò)誤的,如(1+1)2=12+12
對(duì)于C:“若(a+b)c=ac+bc”類推出“(a•b)c=ac•bc”,類推的結(jié)果不符合乘法的運(yùn)算性質(zhì),故錯(cuò)誤,
對(duì)于D:將乘法類推除法,即由“(a+b)c=ac+bc”類推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{c}$”是正確的,
故選:D.

點(diǎn)評(píng) 歸納推理與類比推理不一定正確,我們?cè)谶M(jìn)行類比推理時(shí),一定要注意對(duì)結(jié)論進(jìn)行進(jìn)一步的論證,如果要證明一個(gè)結(jié)論是正確的,要經(jīng)過(guò)嚴(yán)密的論證,但要證明一個(gè)結(jié)論是錯(cuò)誤的,只需要舉出一個(gè)反例.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知-$\frac{π}{2}$<α<$\frac{π}{2}$,若tanα=-1,則α=-$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.兩數(shù)$\frac{{\sqrt{6}+\sqrt{2}}}{4}$與$\frac{{\sqrt{6}-\sqrt{2}}}{4}$的等比中項(xiàng)是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{2}$或$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=x2-2x,(x<-1)的反函數(shù)是y=-$\sqrt{x+1}$+1,(x>3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在數(shù)列{an}中,有an+an+1+an+2(n∈N)為定值,且a1+a2015+a2016=3,則此數(shù)列的前2016項(xiàng)和S2016=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.先閱讀下面的文字:“求$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$的值時(shí),采用了如下的方式:令$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=x,則有x=$\sqrt{2+x}$,兩邊平方,可解得x=2(負(fù)值舍去)”.那么,可用類比的方法,求出2+$\frac{1}{2+\frac{1}{2+…}}$的值是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=$\frac{1}{2}$sin4xcos4x的最小正周期是( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖是2002年8月北京市第24屆國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo),由4個(gè)全等的直角三角形拼合而成,若ABCD與EFGH均為正方形,且AB=α,∠ADE=30°,在正方形ABCD內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自正方形EFGH內(nèi)的概率為1-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的方法共抽取200人的成績(jī)作為樣本,得到成績(jī)的2×2列聯(lián)表.
(1)填寫(xiě)下面的2×2列聯(lián)表,問(wèn)能否有超過(guò)95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”?
(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
文科生理科生合計(jì)
獲獎(jiǎng)5
不獲獎(jiǎng)115
合計(jì)200
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊(cè)答案