3.函數(shù)y=2cos2(x+$\frac{3π}{4}$)-1是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為$\frac{π}{2}$的奇函數(shù)
C.最小正周期為$\frac{π}{2}$的偶函數(shù)D.最小正周期為π的偶函數(shù)

分析 先利用二倍角的余弦函數(shù)公式,誘導(dǎo)公式化簡(jiǎn),進(jìn)而利用周期公式和正弦函數(shù)的圖象和性質(zhì)即可得解.

解答 解:∵y=2cos2(x+$\frac{3π}{4}$)-1=1+cos(2x+$\frac{3π}{2}$)-1=cos(2x+$\frac{3π}{2}$)=sin2x,
∴最小正周期為T=$\frac{2π}{2}$=π,利用正弦函數(shù)的圖象和性質(zhì)可知函數(shù)為最小正周期為π的奇函數(shù).
故選:A.

點(diǎn)評(píng) 本題主要考查了二倍角的余弦函數(shù)公式,誘導(dǎo)公式,周期公式和正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,已知四棱錐A-CBB1C1的底面為矩形,D為AC1的中點(diǎn),AC⊥平面BCC1B1
(Ⅰ)證明:AB∥平面CDB1
(Ⅱ)若AC=BC=1,BB1=$\sqrt{3}$.
(1)求BD的長(zhǎng);
(2)求B1D與平面ABB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)D為(x-2)2+y2=4的內(nèi)部,計(jì)算$\underset{∬}{D}$y$\sqrt{{x}^{2}+{y}^{2}}$dσ=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列結(jié)論正確的是(  )
A.“若a>1,則a2>a”的否命題是“若a>1,則a2≤a”
B.對(duì)于定義在R上的可導(dǎo)函數(shù)f(x),“f′(x0)=0”是“x0為極值點(diǎn)”的充要條件
C.“若tanα$≠\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.,?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.用0,1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),比40000大的奇數(shù)共有( 。
A.72B.90C.120D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知全集U=R,集合A={x|y=$\sqrt{1-x}$},集合B={x|2x≤8}.
(Ⅰ)求(∁UA)∩B;
(Ⅱ)集合C={x|x<a},若“x∈C”是“x∈A”的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在一次詩詞知識(shí)競(jìng)賽調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其中答對(duì)詩詞名句與否的人數(shù)如圖所示.
(Ⅰ)完成下面的2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為答對(duì)詩詞名句與年齡有關(guān),請(qǐng)說明你的理由;(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
正確錯(cuò)誤合計(jì)
20~30
30~40
合計(jì)
(Ⅱ)若計(jì)劃在這次場(chǎng)外調(diào)查中按年齡段分層抽樣選取6名選手,求3名選手中在20~30歲之間的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在某化學(xué)反應(yīng)的中間階段,壓力保持不變,溫度從1℃變化到5℃,反應(yīng)結(jié)果如表所示(t表示溫度,y表示結(jié)果):
(1)判斷變量t與y之間的正相關(guān)還是負(fù)相關(guān),請(qǐng)用相關(guān)系數(shù)加以說明(精確到0.01);
(2)求化學(xué)反應(yīng)的結(jié)果y對(duì)溫度t的線性回歸方程$\widehat{y}$=$\widehat{a}$+$\widehat$t,并預(yù)測(cè)當(dāng)溫度到達(dá)10℃時(shí)反應(yīng)結(jié)果為多少?
t12345
y3571011
附:線性回歸方程中$\widehat{y}$=$\widehat$t+$\widehat{a}$,$\widehat$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{ty}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{t}$.
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,$\sqrt{2}$=1.41,$\sqrt{3}$=1.73,$\sqrt{7}$=2.65.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1,則角x一定不是( 。
A.第四象限角B.第三象限角C.第二象限角D.第一象限角

查看答案和解析>>

同步練習(xí)冊(cè)答案