分析 (Ⅰ)根據(jù)絕對值的性質(zhì)求出|1-$\frac{1}{x}$|+|2-$\frac{1}{x}$|的最小值,求出M的值即可;
(Ⅱ)根據(jù)基本不等式的性質(zhì)得到$\sqrt{ab}≤1$以及$\frac{ab}{a+b}≤\frac{{\sqrt{ab}}}{2}$,從而證明結(jié)論.
解答 (Ⅰ)解:$f(x)≥tx?|x-1|+|2x-1|≥tx?|1-\frac{1}{x}|+|2-\frac{1}{x}|≥t$恒成立
$?t≤{(|1-\frac{1}{x}|+|2-\frac{1}{x}|)_{min}}$
∵$|1-\frac{1}{x}|+|2-\frac{1}{x}|≥|(1-\frac{1}{x})-(2-\frac{1}{x})|=1$,
當(dāng)且僅當(dāng)$(1-\frac{1}{x})(2-\frac{1}{x})≤0$,即$\frac{1}{2}≤x≤1$時取等號,
∴t≤1,∴M=1.
(Ⅱ)證明:∵2=a2+b2≥2ab,∴ab≤1.
∴$\sqrt{ab}≤1$.(當(dāng)且僅當(dāng)“a=b”時取等號)①
又∵$\sqrt{ab}≤\frac{a+b}{2}$,∴$\frac{{\sqrt{ab}}}{a+b}≤\frac{1}{2}$.
∴$\frac{ab}{a+b}≤\frac{{\sqrt{ab}}}{2}$,(當(dāng)且僅當(dāng)“a=b”時取等號)②
由①、②得$\frac{ab}{a+b}≤\frac{1}{2}$.(當(dāng)且僅當(dāng)“a=b”時取等號)
∴a+b≥2ab.
點評 本題考查了解絕對值不等式問題,考查不等式的性質(zhì)及其應(yīng)用,是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年份2017+x | 0 | 1 | 2 | 3 | 4 |
人口總數(shù)y | 5 | 7 | 8 | 11 | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 零點的個數(shù)為1 | B. | 零點的個數(shù)為2 | ||
C. | 零點的個數(shù)為3 | D. | 零點的個數(shù)與a的值有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | ±$\frac{1}{2}$ | D. | ±$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com