2.函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x)  的單調(diào)減區(qū)間為( 。
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

分析 先求出函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x)的定義域?yàn)?<x<2,再由y=$lo{g}_{\frac{1}{3}}x$是(0,+∞)上的減函數(shù),能求出函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x) 的單調(diào)減區(qū)間.

解答 解:∵函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x),
∴-x2+2x>0,解得0<x<2,
t=-x2+2x在(0,2)內(nèi)的增區(qū)間為(0,1],減區(qū)間為[1,2),
∴y=$lo{g}_{\frac{1}{3}}x$是(0,+∞)上的減函數(shù),
∴函數(shù)y=log${\;}_{\frac{1}{3}}$(-x2+2x) 的單調(diào)減區(qū)間為(0,1].
故選:C.

點(diǎn)評(píng) 本題考查得復(fù)合函數(shù)的減區(qū)間的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若|a-c|<h,|b-c|<h,則下列不等式一定成立的是( 。
A.|a-b|<2hB.|a-b|>2hC.|a-b|<hD.|a-b|>h

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.求以雙曲線y2-3x2=12的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.“圓柱與球的組合體”如圖所示,則它的三視圖是( 。  
 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={-2,-1,3,4},B={-1,2,3},則A∩B=( 。
A.φB.{-1,3}C.{-1,2}D.{-1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F在棱CC1上,且CF=2FC1,P是側(cè)面四邊形BCC1B1內(nèi)一點(diǎn)(含邊界),若A1P∥平面AEF,則直線A1P與面BCC1B1所成角的正弦值的取值范圍是(  )
A.$[\frac{{2\sqrt{5}}}{5},\frac{{5\sqrt{29}}}{29}]$B.$[\frac{{3\sqrt{13}}}{13},\frac{{5\sqrt{29}}}{29}]$C.$[\frac{{3\sqrt{13}}}{13},\frac{{2\sqrt{2}}}{3}]$D.$[\frac{{2\sqrt{5}}}{5},\frac{{2\sqrt{2}}}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇.2016年雙十一期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)516億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(Ⅰ)先完成關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(Ⅱ)若用分層抽樣的方法從“對(duì)商品好評(píng)“和“對(duì)商品不滿意“中抽出5次交易,再?gòu)倪@5次交易中選出2次.求恰有一次為”商品好評(píng)”的概率.
附臨界值表:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.897 10.828
K2的觀測(cè)值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
關(guān)于商品和服務(wù)評(píng)價(jià)的2×2列聯(lián)表:
對(duì)服務(wù)好評(píng)對(duì)服務(wù)不滿意合計(jì)
對(duì)商品好評(píng)a=80b=40120
對(duì)商品不滿意c=70d=1080
合計(jì)15050n=200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知$\sqrt{(x-\frac{\sqrt{6}}{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\frac{\sqrt{6}}{2})^{2}+{y}^{2}}$成等差數(shù)列,記(x,y)對(duì)應(yīng)點(diǎn)的軌跡是C.
(1)求軌跡C的方程;
(2)若直線l:y=kx+m與曲線C交于不同的兩點(diǎn)A,B,與圓x2+y2=1相切于點(diǎn)M.
①證明:OA⊥OB(O為坐標(biāo)原點(diǎn));
②設(shè)λ=$\frac{|AM|}{|BM|}$,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=x•e-x在以下哪個(gè)區(qū)間是增函數(shù)( 。
A.[-1,0]B.[2,8]C.[1,2]D.[0,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案