16.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,過F的直線與C交于A、B兩點(diǎn),與l交于點(diǎn)P,若|AF|=3|FB|,則|PF|=( 。
A.7.5B.7C.8.5D.8

分析 設(shè)直線AB的方程為:y=k(x-2),與拋物線方程聯(lián)立化為:k2x2-(4k2+8)x+4k2=0,由|AF|=3|FB|,可得xA+2=3(xB+2),再利用根與系數(shù)的關(guān)系可得k,即可得出.

解答 解:設(shè)直線AB的方程為:y=k(x-2),
聯(lián)立$\left\{\begin{array}{l}{y=k(x-2)}\\{{y}^{2}=8x}\end{array}\right.$,化為:k2x2-(4k2+8)x+4k2=0,
∴xA+xB=$\frac{4{k}^{2}+8}{{k}^{2}}$,xAxB=4.
∵|AF|=3|FB|,
∴xA+2=3(xB+2),
聯(lián)立解得:k=$±\sqrt{3}$.
∴P$(-2,±4\sqrt{3})$.
∴|PF|=$\sqrt{{4}^{2}+(4\sqrt{3})^{2}}$=8.
故選:D.

點(diǎn)評 本題考查了拋物線的定義標(biāo)準(zhǔn)方程及其性質(zhì)、弦長公式,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等比數(shù)列{an}中,a1=2,q=2,則該數(shù)列的第5項(xiàng)是32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x(x+a)-lnx,其中a為常數(shù).
(1)當(dāng)a=-1時,求f(x)的極值;
(2)若f(x)是區(qū)間$(\frac{1}{2},1)$內(nèi)的單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為測得河對岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測得∠BDC=45°,則塔AB的高是(  )
A.10 mB.10$\sqrt{2}$ mC.10$\sqrt{3}$ mD.10$\sqrt{6}$ m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知拋物線y2=ax(a≠0)的準(zhǔn)線方程為x=-3,△ABC為等邊三角形,且其頂點(diǎn)在此拋物線上,O是坐標(biāo)原點(diǎn),則△ABC的邊長為24$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.?dāng)?shù)列$\frac{1}{3},\frac{3}{5},\frac{5}{8},\frac{7}{12},\frac{9}{17}…$的第6項(xiàng)為$\frac{11}{23}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0),焦點(diǎn)F,O為坐標(biāo)原點(diǎn),直線AB(不垂直x軸)過點(diǎn)F且與拋物線C交于A,B兩點(diǎn),直線OA與OB的斜率之積為-p.
(Ⅰ)求拋物線C的方程;
(Ⅱ)若M為線段AB的中點(diǎn),射線OM交拋物線C于點(diǎn)D,求證:$\frac{{|{OD}|}}{{|{OM}|}}>2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C1:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)F″與F關(guān)于x軸對稱,直線l:y=2與拋物線C1相交于A,B兩點(diǎn),與y軸相交于M點(diǎn),且$\overrightarrow{F″A}$•$\overrightarrow{FB}$=-5.
(1)求拋物線C1的方程;
(2)若以F″,F(xiàn)為焦點(diǎn)的橢圓C2過點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$).
①求橢圓C2的方程;
②過點(diǎn)F的直線與橢圓C2相交于P,Q兩點(diǎn),且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,求|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.記$\sum_{i=1}^n{a_i}$=a1+a2+…+an,又知f(x)=$\frac{1}{{{x^2}+1}}$,則$\sum_{i=1}^{100}$f(i)+$\sum_{i=2}^{100}$f($\frac{1}{i}$)的值為( 。
A.100B.99$\frac{1}{2}$C.99D.98$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案