分析 根據(jù)圖象可得周期T=π,利用周期公式可求ω,利用將點($\frac{π}{8}$,A)代入y=Asin(2x+φ)及φ的范圍可求φ的值,將(0,$\sqrt{2}$),y=Asin(2x+$\frac{π}{4}$)即可求得A的值,即可確定函數(shù)解析式.
解答 解:根據(jù)圖象可得,$\frac{3T}{4}$=$\frac{7π}{8}-\frac{π}{8}$,
T=$\frac{2π}{ω}$=π,則ω=2,
將點($\frac{π}{8}$,A)坐標代入y=Asin(2x+φ),
sin($\frac{π}{4}$+φ)=1,|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{4}$,
將點(0,$\sqrt{2}$)代入得$\sqrt{2}$=Asin$\frac{π}{4}$,
∴A=2,
∴f(x)=2sin(2x+$\frac{π}{4}$),
故答案為:2sin(2x+$\frac{π}{4}$).
點評 本題考查的知識點是正弦型函數(shù)解析式的求法,其中關(guān)鍵是要根據(jù)圖象分析出函數(shù)的最值,周期等,進而求出A,ω和φ值,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 21號 | B. | 22號 | C. | 23號 | D. | 24號 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{10}+\frac{9}{10}$i | B. | $\frac{3}{10}-\frac{9}{10}i$ | C. | $-\frac{3}{10}+\frac{9}{10}i$ | D. | $\frac{17}{10}-\frac{1}{10}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com