8.將5名大學(xué)生分配到A,B,C 3個(gè)鄉(xiāng)鎮(zhèn)去任職,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,那么A鎮(zhèn)分得兩位大學(xué)生的概率為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{4}$

分析 根據(jù)題意,先用分類計(jì)數(shù)原理計(jì)算“將5名大學(xué)生分配到A,B,C 3個(gè)鄉(xiāng)鎮(zhèn)去任職,每個(gè)鄉(xiāng)鎮(zhèn)至少一名”的情況數(shù)目,再用分步計(jì)數(shù)原理計(jì)算“A鄉(xiāng)鎮(zhèn)分配兩位大學(xué)生”的情況數(shù)目,由古典概型計(jì)算公式計(jì)算可得答案.

解答 解:根據(jù)題意,將5名大學(xué)生分配到A,B,C 3個(gè)鄉(xiāng)鎮(zhèn)去任職,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,
需要分2種情況討論:
①、按照2,2,1分配到3個(gè)鄉(xiāng)鎮(zhèn),有$\frac{{C}_{5}^{2}{C}_{3}^{2}{C}_{1}^{1}}{{A}_{2}^{2}}$×A33=90種分配方法,
②、按照3,1,1分配到3個(gè)鄉(xiāng)鎮(zhèn),有$\frac{{C}_{5}^{3}{C}_{2}^{1}{C}_{1}^{1}}{{A}_{2}^{2}}$×A33=60種分配方法,
則將5名大學(xué)生分配到A,B,C 3個(gè)鄉(xiāng)鎮(zhèn)去任職,每個(gè)鄉(xiāng)鎮(zhèn)至少一名有90+60=150種分配方法;
若A鄉(xiāng)鎮(zhèn)分配兩位大學(xué)生,需要分2步分析:
①、在5名大學(xué)生中選出2人,安排到A鎮(zhèn),有C52=10種情況,
②、將剩下的3人分配到B、C兩個(gè)鄉(xiāng)鎮(zhèn),有C32×A22=6種情況,
則A鄉(xiāng)鎮(zhèn)分配兩位大學(xué)生的分配方法有10×6=60種分配方法,
則A鎮(zhèn)分得兩位大學(xué)生的概率P=$\frac{60}{150}$=$\frac{2}{5}$;
故選:B.

點(diǎn)評(píng) 本題考查排列、組合的應(yīng)用,涉及古典概型的計(jì)算,關(guān)鍵是掌握古典概型的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.平面向量$\overrightarrow{a}$、$\overrightarrow$滿足($\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,則$\overrightarrow$在$\overrightarrow{a}$方向上的投影為( 。
A.2B.-2C.1D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若點(diǎn)M在直線OB上,則|$\overrightarrow{OA}$$+\overrightarrow{OM}$|的最小值為( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.平面幾何中有如下結(jié)論:若在三角形ABC的內(nèi)切圓的半徑為r1,外接圓的半徑為r2,則$\frac{{r}_{1}}{{r}_{2}}$=$\frac{1}{2}$.推廣到空間,可以得到類似結(jié)論;若正四面體P-ABC(所有棱長(zhǎng)都相等的四面體叫正四面體)的內(nèi)切球半徑為R1,外接球半徑為R2,則$\frac{{R}_{1}}{{R}_{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知扇形的半徑為6,圓心角為120°,則扇形的弧長(zhǎng)為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為(3,0),則|$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$|的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$a=\int_{-\frac{π}{4}}^{\frac{3π}{4}}{2cos(x-\frac{π}{4})}dx$,則${({x-\frac{a}{{\sqrt{x}}}})^8}$展開式中x5的系數(shù)為448.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.己知四個(gè)命題:
①在回歸分析中,R2可以用來(lái)刻畫回歸效果,R2的值越大,模型的擬合效果越好;
②在獨(dú)立性檢驗(yàn)中,隨機(jī)變量K2的值越大,說(shuō)明兩個(gè)分類變量有關(guān)系的可能性越大;
③在回歸方程$\stackrel{∧}{y}$=0.2x+12中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量$\stackrel{∧}{y}$平均增加1個(gè)單位;
④兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于1;
其中真命題是( 。
A.①④B.②④C.①②D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$∥$\overrightarrow$,則tan($\frac{π}{4}$+θ)等于( 。
A.0B.-$\frac{3}{5}$C.-1D.-$\frac{5}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案