【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,求函數(shù)在區(qū)間上的最值.

【答案】(1)答案見解析;(2)當,;當時,.

【解析】分析:(1)對函數(shù)求導,將二次不等式因式分解,結合二次函數(shù)的圖像和兩根關系得到解集;(2)根據(jù)第一問,得到函數(shù)的單調(diào)性,進而得到最值.

詳解:

(1)令 ,

①當時,,為常數(shù)函數(shù),則上沒有單調(diào)性.

②當時,,故函數(shù)上單調(diào)遞增.

③當時,令可得:,則上遞減,在,上遞增.

④當時,令可得:,則上遞減,在,上遞增.

⑤當時,令可得:,故上遞增,在,上遞減.

(2)①當時,由(1)知函數(shù)在區(qū)間上單調(diào)遞增,故 , .

②當時,由(1)知函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;故 ,

,

故當,;

時,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的首項,其前項和為,對于任意正整數(shù),,都有.

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設數(shù)列滿足,且.

①求證數(shù)列為常數(shù)列.

②求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若以直角坐標系xOy的O為極點,Ox為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程是ρ=
(1)將曲線C的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l的參數(shù)方程為 (t為參數(shù))當直線l與曲線C相交于A,B兩點,求| |

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=sinωx(>0)的圖象向右平移 個單位得到函數(shù)y=g(x)的圖象,并且函數(shù)g(x)在區(qū)間[ ]上單調(diào)遞增,在區(qū)間[ ]上單調(diào)遞減,則實數(shù)ω的值為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求在區(qū)間上的取值范圍.

)當時,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,有、三座城市,城在城的正西方向,且兩座城市之間的距離為;城在城的正北方向,且兩座城市之間的距離為.由城到城只有一條公路,甲有急事要從城趕到城,現(xiàn)甲先從城沿公路步行到點(不包括、兩點)處,然后從點處開始沿山路趕往城.若甲在公路上步行速度為每小時,在山路上步行速度為每小時,設(單位:弧度),甲從城趕往城所花的時間為(單位:).

(1)求函數(shù)的表達式,并求函數(shù)的定義域;

(2)當點在公路上何處時,甲從城到達城所花的時間最少,并求所花的最少的時間的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數(shù)方程為 (α為參數(shù)).以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+ )= .l與C交于A、B兩點. (Ⅰ)求曲線C的普通方程及直線l的直角坐標方程;
(Ⅱ)設點P(0,﹣2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,滿足.

(Ⅰ)(i)求數(shù)列的通項公式;

(ii)已知對于,不等式恒成立,求實數(shù)的最小值;

(Ⅱ) 數(shù)列的前項和為,滿足,是否存在非零實數(shù),使得數(shù)列為等比數(shù)列? 并說明理由.

查看答案和解析>>

同步練習冊答案