分析 (1)證明BC⊥平面PAB,可得BC⊥PA.同理CD⊥PA,即可證明PA⊥平面ABCD;
(2)利用三棱錐P-ACE的體積V=VP-ACD-VE-ACD,即可求三棱錐P-ACE的體積;
(3)證明∠ACE就是直線AC與平面PCD所成的角,即可求直線AC與平面PCD所成的角.
解答 (1)證明:∵底面ABCD為正方形,∴BC⊥AB,
又BC⊥PB,∴BC⊥平面PAB,
∴BC⊥PA.
同理CD⊥PA,
∵BC∩CD=C,∴PA⊥平面ABCD.…(4分)
(2)解:∵PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點(diǎn),
∴E到平面ACD的距離h=1,
S△ACD=$\frac{1}{2}×2×2$=2,
∴三棱錐P-ACE的體積V=VP-ACD-VE-ACD=$\frac{1}{3}$×$\frac{1}{2}×2×2×2$-$\frac{1}{3}×2×1$=$\frac{2}{3}$…(8分)
(3)解:∵PA⊥平⊥面ABCD,∴PA⊥CD∵AD⊥CD,∴CD⊥平面PAD∴CD⊥AE
∵PA=AD,E是PD的中點(diǎn),∴PD⊥AE∴AE⊥平面PCD,
∴∠ACE就是直線AC與平面PCD所成的角,
AE=$\sqrt{2}$,AC=2$\sqrt{2}$∴∠ACE=30°…(12分)
點(diǎn)評(píng) 本題考查線面垂直的證明,考查三棱錐P-ACE的體積的求法,考查線面角,注意空間思維能力的培養(yǎng).屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線 | B. | 橢圓 | C. | 圓 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p | B. | p∧q | C. | p∧(¬q) | D. | ¬p∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com