7.為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克).已知甲廠生產(chǎn)的產(chǎn)品共有98件,下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號12345
x169178166175180
y7580777081
(1)求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)ξ的分布列及其均值(即數(shù)學(xué)期望).

分析 (1)求出抽樣比,然后求解乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)求出乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品$\frac{2}{5}$,然后求解乙廠生產(chǎn)的優(yōu)等品的數(shù)量;
(3)ξ的取值為0,1,2.求出概率,得到分布列,然后求解期望即可.

解答 (12分)解:(1)抽樣比為$\frac{98}{14}=7,5×7=35$,即乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件.
(2)易見只有編號為2,5的產(chǎn)品為優(yōu)等品,所以乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品$\frac{2}{5}$,
故乙廠生產(chǎn)有大約$35×\frac{2}{5}=14$(件)優(yōu)等品,
(3)ξ的取值為0,1,2.
$P(ξ=0)=\frac{C_3^2}{C_5^2}=\frac{3}{10},P(ξ=1)=\frac{C_3^1×C_2^1}{C_5^2}=\frac{3}{5},P(ξ=2)=\frac{C_3^2}{C_5^2}=\frac{1}{10}$,
所以ξ的分布列為:

ξ012
P$\frac{3}{10}$$\frac{6}{10}$$\frac{1}{10}$
故$ξ的均值為Eξ=0×\frac{3}{10}+1×\frac{3}{5}+2×\frac{1}{10}+=\frac{4}{5}$.

點評 本題考查分層抽樣,離散性隨機變量的分布列以及期望的求法,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$sinα=\frac{1}{3},α∈({\frac{π}{2},π})$,則cos(-α)=( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面上的曲線l及點P,在l上任取一點Q,線段PQ長度的最小值稱為點P到曲線l的距離,記作d(P,l).
(1)求點P(3,4)到曲線l:x2+y2=4的距離d(P,l);
(2)設(shè)曲線l:$\left\{\begin{array}{l}{{y}^{2}=1(-1<x<1)}\\{(x-1)^{2}+{y}^{2}=1(1≤x≤2)}\\{(x+1)^{2}+{y}^{2}=1(-2≤x≤-1)}\end{array}\right.$,求點集S={P|2<d(P,l)≤3}所表示圖形的面積;
(3)設(shè)曲線l1:y=0(-1≤x≤1),曲線l2:x2+y2=1,求出到兩條曲線l1,l2距離相等的點的集合Ω={P|d(P,l1)=d(P,l2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)非負實數(shù)x和y滿足$\left\{\begin{array}{l}x+y-2≤0\\ x+2y-4≤0\\ x+4y-4≤0\end{array}\right.$,則z=3x+y的最大值為(  )
A.2B.$\frac{14}{3}$C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=xex-ax(a∈R,a為常數(shù)),e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的任意一條切線都不與y軸垂直,求a的取值范圍;
(2)當(dāng)a=2時,求使得f(x)+k>0成立的最小正整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{lo{g_2}({{x^2}-2ax+3a}),x≥1}\\{1-{x^2},x<1}\end{array}$的值域為R,則常數(shù)a的取值范圍是( 。
A.(-1,1]∪[2,3)B.(-∞,1]∪[2,+∞)C.(-1,1)∪[2,3)D.(-∞,0]{1}∪[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為了得到函數(shù)y=cos2x的圖象,可將函數(shù)$y=sin({2x-\frac{π}{6}})$的圖象( 。
A.向右平移$\frac{π}{6}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向左平移$\frac{π}{3}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=xlnx+(1-x)ln(1-x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a-2)ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x+1)lnx-a(x-1)在x=e處的切線在y軸上的截距為2-e.
(1)求a的值;
(2)函數(shù)f(x)能否在x=1處取得極值?若能取得,求此極值,若不能說明理由.
(3)當(dāng)1<x<2時,試比較$\frac{2}{x-1}$與 $\frac{1}{lnx}$-$\frac{1}{ln(2-x)}$大小.

查看答案和解析>>

同步練習(xí)冊答案