考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)設(shè)數(shù)列{a
n}的公比為q,依題意,q
2=
=9,又q>1,可求得q=3,繼而可求得a
1=2,于是可求得數(shù)列{a
n}通項(xiàng)公式;
(2)由(1)可知b
n=
=n•3
n-1,設(shè)數(shù)列{b
n}前n項(xiàng)和為S
n,則S
n=b
1+b
2+…+b
n=1+2×3+3×3
2+…+n•3
n-1,利用錯(cuò)位相減法可求得S
n;
(3)依題意,c
n=a
n+(-1)
nlna
n=2•3
n-1+(-1)
nln(2•3
n-1),利用分組求和的方法可求得數(shù)列{c
n}前n項(xiàng)和T
n.
解答:
解:(1)設(shè)數(shù)列{a
n}的公比為q,∵a
1+a
2=8,a
3+a
4=72,
∴q
2=
=9,又q>1,
∴q=3,
∴4a
1=8,a
1=2,
∴數(shù)列{a
n}通項(xiàng)公式為:a
n=2•3
n-1;
(2)∵b
n=
=n•3
n-1,設(shè)數(shù)列{b
n}前n項(xiàng)和為S
n;
則S
n=b
1+b
2+…+b
n=1+2×3+3×3
2+…+n•3
n-1,①
3S
n=b
1+b
2+…+b
n=1×3+2×3
2+…+(n-1)•3
n-1+n•3
n,②
①-②得:-2S
n=1+3+3
2+…+3
n-1-n•3
n=
-n•3
n=
×3
n-
,
∴S
n=
×3
n+
;
(3)∵a
n=2•3
n-1;
∴c
n=a
n+(-1)
nlna
n=2•3
n-1+(-1)
nln(2•3
n-1)
=2•3
n-1+(-1)
n[ln2+(n-1)ln3],
令P
n=(-1)
1[ln2+(1-1)ln3]+(-1)
2[ln2+(2-1)ln3]-…+(-1)
n[ln2+(n-1)ln3]
=[-ln2+(ln2+ln3)]+[-(ln2+2ln3)+(ln2+3ln3)]+…+(-1)
n[ln2+(n-1)ln3]
=ln3+ln3+…+(-1)
n[ln2+(n-1)ln3],
當(dāng)n為偶數(shù)時(shí),P
n=
ln3;
當(dāng)n為奇數(shù)時(shí),P
n=
ln3-[ln2+(n-1)ln3]=-ln2-
ln3;
又2•3
1-1+2•3
2-1+2•3
3-1+…+2•3
n-1=2(1+3+3
2+…+3
n-1)=2×
=3
n-1,
∴數(shù)列{c
n}前n項(xiàng)和
T
n=c
1+c
2+…+c
n=(2•3
1-1+2•3
2-1+2•3
3-1+…+2•3
n-1)+(-1)
1[ln2+(1-1)ln3]+(-1)
2[ln2+(2-1)ln3]-…+(-1)
n[ln2+(n-1)ln3]
=3
n-1+P
n=
| 3n-1-ln2-ln3,n為奇數(shù) | 3n-1+ln3,n為偶數(shù) |
| |
.
點(diǎn)評:本題考查數(shù)列的求和,考查等比數(shù)列的通項(xiàng)公式與錯(cuò)位相減法求和,突出考查分組求和的應(yīng)用,考查抽象思維、邏輯思維能力與綜合運(yùn)算能力,屬于難題.