對(duì)于非零復(fù)數(shù)a,b,以下有四個(gè)命題
①a+
1
a
≠0
②(a+b)2=a2+2ab+b2
③若|a|=|b|,則a=±b.
④若a2=ab,則a=b.則一定為真的有( 。
A、②④B、①③C、①②D、③④
考點(diǎn):復(fù)數(shù)代數(shù)形式的混合運(yùn)算
專題:簡(jiǎn)易邏輯,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:取特殊值說明①③錯(cuò)誤;直接利用復(fù)數(shù)滿足實(shí)數(shù)的運(yùn)算法則說明②④正確.
解答: 解:對(duì)于①,取a=-1,則a+
1
a
≠0,①不正確;
對(duì)于②,對(duì)于任意復(fù)數(shù)a,b,一定有(a+b)2=a2+2ab+b2,②正確;
對(duì)于③,取a=1,b=i,|a|=|b|,但a≠±b,③錯(cuò)誤;
對(duì)于④,由a2=ab,得a=b,命題④正確.
∴正確的命題是②④.
故選:A.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了復(fù)數(shù)代數(shù)形式的混合運(yùn)算,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則f(x)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|0<x≤5},B={x|x<-3,x>1}求:
(1)A∩B;
(2)A∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,m),
b
=(2,-m),若
a
b
,則實(shí)數(shù)m等于( 。
A、-
2
B、
2
C、0
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是偶函數(shù),且在(0,2)內(nèi)單調(diào)遞增的是( 。
A、y=x2-2x
B、y=cosx+1
C、y=lg|x|+2
D、y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B是非空集合,定義A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},則A*B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,
i3(i+1)
i-1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公比大于1的等比數(shù)列,已知a1+a2=8,a3+a4=72.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)若bn=
n•an
2
,求數(shù)列{bn}前n項(xiàng)和;
(3)若{cn}滿足cn=an+(-1)nlnan,求數(shù)列{cn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程kx2+2(k-1)x-(k-1)=0.
(1)若方程有兩個(gè)不相等的異號(hào)實(shí)根,求k的取值范圍;
(2)若方程有兩個(gè)不相等的正實(shí)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案