12.設(shè)不等式組$\left\{{\begin{array}{l}{2x+y≥2}\\{x-2y≥-4}\\{3x-y≤3}\end{array}}\right.$所表示的平面區(qū)域為M,若函數(shù)y=k(x+1)+1的圖象經(jīng)過區(qū)域M,則實數(shù)k的取值范圍是$[-\frac{1}{2},1]$.

分析 首先畫出可行域,利用目標函數(shù)的幾何意義求最值.

解答 解:不等式組表示的平面區(qū)域如圖:函數(shù)y=k(x+1)+1的圖象為經(jīng)過定點B(-1,1)的直線,要使此直線經(jīng)過區(qū)域M,則斜率kAB≤k≤kBC,其中${k}_{AB}=-\frac{1}{2}$,${k}_{BC}=\frac{2-1}{1}=1$,所以實數(shù)k的取值范圍是$[-\frac{1}{2},1]$;
故答案為:$[-\frac{1}{2},1]$.

點評 本題考查了簡單線性規(guī)劃問題;利用了數(shù)形結(jié)合的思想,關(guān)鍵是正確畫出可行域,利用目標函數(shù)的幾何意義求最值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)的圖象關(guān)于(1,1)對稱,當x∈(0,1]時,f(x)=x2,當x∈(-1,0]時,f(x)+2=$\frac{2}{f(\sqrt{x+1})}$,若g(x)=f(x)-t(x+1)為定義在(-1,3)上的函數(shù),則關(guān)于g(x)的零點個數(shù)的敘述中錯誤的是( 。
A.g(x)可能沒有零點B.g(x)可能有1個零點C.g(x)可能有2個零點D.g(x)可能有3個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某個幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸,可得出這個幾何體的內(nèi)切球半徑是( 。
A.$\frac{4}{3}$B.$\frac{4}{9}$C.$\sqrt{6}-2$D.$3\sqrt{6}-6$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}的前n項和是Sn,則下列四個命題中,錯誤的是( 。
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{$\frac{{S}_{n}}{n}$}的公差為$\fraccm60lop{2}$的等差數(shù)列
B.若數(shù)列{$\frac{{S}_{n}}{n}$}是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項,偶數(shù)項分別構(gòu)成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項,偶數(shù)項分別構(gòu)成公差相等的等差數(shù)列,則{an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知實數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面區(qū)域為D,若存在點P(x,y)∈D,使x2+y2≥m成立,則實數(shù)m的最大值為$\frac{181}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐D-ABCM中,AD⊥DM,底面四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)證明:AD⊥BD;
(Ⅱ)若AD=DM,
(i)求直線BD與平面AMD所成角的正弦值;
(ii)求三棱錐D-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$α∈(0,\frac{π}{2})$,且$2cos2α=cos(α-\frac{π}{4})$,則sin2α的值為(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$-\frac{7}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列命題中正確命題的個數(shù)是
(1)對于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1>0;
(2)命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
(3)設(shè)ξ~B(n,p),已知Eξ=3,Dξ=$\frac{9}{4}$,則n與p值分別為12,$\frac{1}{4}$
(4)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知動點P到雙曲線${x^2}-\frac{y^2}{2}=1$的左、右焦點F1、F2的距離之和為4.
(Ⅰ)求動點P的軌跡E的標準方程;
(Ⅱ)若過點F1的直線l交軌跡E于A,B兩個不同的點,試問:在x軸上能否存在一個定點M,使得$\overrightarrow{AM}•\overrightarrow{BM}$為定值λ?若存在,請求出定點M與定值λ;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案