18.已知拋物線y2=2px(p>0)的準(zhǔn)線與橢圓$\frac{x^2}{4}+\frac{y^2}{6}$=1相切,則p的值為( 。
A.2B.3C.4D.5

分析 求出拋物線的準(zhǔn)線方程,然后求解p,即可.

解答 解:拋物線y2=2px(p>0)的準(zhǔn)線與橢圓$\frac{x^2}{4}+\frac{y^2}{6}$=1相切,
可得拋物線的準(zhǔn)線方程為:x=-2,即:-$\frac{p}{2}$=-2,解得p=4.
故選:C.

點(diǎn)評(píng) 本題考查拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,直線與橢圓的位置關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線$\frac{x^2}{m}-{y^2}=1$過拋物線y2=8x的焦點(diǎn),則此雙曲線的漸近線方程為$y=±\frac{1}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知點(diǎn)P在拋物線y2=4x上,它到拋物線焦點(diǎn)的距離為5,那么點(diǎn)P的坐標(biāo)為( 。
A.(4,4),(4,-4)B.(-4,4),(-4,-4)C.(5,$2\sqrt{5}$),(5,$-2\sqrt{5}$)D.(-5,$2\sqrt{5}$),(-5,$-2\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知坐標(biāo)原點(diǎn)為O,過拋物線y2=4x的焦點(diǎn)F作一直線l,與拋物線交于A,B兩點(diǎn),若|$\overrightarrow{AB}$|=6,則$\overrightarrow{FA}$$•\overrightarrow{FB}$=( 。
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)拋物線y2=2x的焦點(diǎn)為F,過點(diǎn)A(2,2)和B($\frac{3}{2}$,-$\sqrt{3}$)的直線與拋物線的準(zhǔn)線相交于C,設(shè)△BCF與△ACF的面積分別為S1、S2,則$\frac{{S}_{1}}{{S}_{2}}$=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-1(n∈N*),
(1)求b1,b2,b3,試猜想出{bn}的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明;
(2)求和:b1${C}_{n}^{0}$+b2${C}_{n}^{1}$+b3${C}_{n}^{2}$+…+bn+1${C}_{n}^{n}$
(3)求和:(log2b1)•${C}_{n}^{0}$+(log2b2)•${C}_{n}^{1}$+(log2b3)•${C}_{n}^{2}$+…(log2bn+1)•${C}_{n}^{n}$
(4)若M(n)=4+(log2bn)•bn+3,試比較M(n)與8n2-4n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-2,則|2$\overrightarrow{a}$-$\overrightarrow$|=(  )
A.2B.$2\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若曲線f(x)=ex+$\frac{m}{x}$在(-∞,0)上存在垂直y軸的切線,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,$\frac{4}{{e}^{2}}$]B.(0,$\frac{4}{{e}^{2}}$]C.(-∞,4]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則點(diǎn)P(x,y)所在區(qū)域的面積是1;若z=ax+y的最大值為4,則實(shí)數(shù)a的值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案