1.下列不等式中,與不等式$\frac{x+4}{{{x^2}-2x+2}}>3$的解集相同的是(  )
A.(x+4)(x2-2x+2)>3B.x+4>3(x2-2x+2)C.$\frac{1}{{{x^2}-2x+2}}>\frac{3}{x+4}$D.$\frac{{{x^2}-2x+2}}{x+4}<\frac{1}{3}$

分析 判斷出分母大于0,根據(jù)不等式的性質(zhì)求出結(jié)論即可.

解答 解:∵x2-2x+2>0,
∴由不等式$\frac{x+4}{{{x^2}-2x+2}}>3$,
得:x+4>3(x2-2x+2),
故選:B.

點評 本題考查了不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校為緩解高三學(xué)生的高考壓力,經(jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動,經(jīng)過一段時間的訓(xùn)練后從該年級800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為A、B、C、D、E五個等級,統(tǒng)計數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)圖中抽樣調(diào)查的數(shù)據(jù),回答下列問題:
(1)試估算該校高三年級學(xué)生獲得成績?yōu)锽的人數(shù);
(2)若等級A、B、C、D、E分別對應(yīng)100分、90分、80分、70分、60分,學(xué)校要求當(dāng)學(xué)生獲得的等級成績的平均分大于90分時,高三學(xué)生的考前心理穩(wěn)定,整體過關(guān),請問該校高三年級目前學(xué)生的考前心理穩(wěn)定情況是否整體過關(guān)?
(3)以每個學(xué)生的心理都培養(yǎng)成為健康狀態(tài)為目標(biāo),學(xué)校決定對成績等級為E的16名學(xué)生(其中男生4人,女生12人)進(jìn)行特殊的一對一幫扶培訓(xùn),從按分層抽樣抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在區(qū)間[-4,1]上隨機(jī)地取一個實數(shù)x,若x滿足|x|<a的概率為$\frac{4}{5}$,則實數(shù)a的值為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)非零平面向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{c}$|,$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow{c}$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.150°B.120°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=8,AD=4,AB=2DC=4$\sqrt{5}$.
(1)設(shè)M是PC上的一點,求證:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x,y)=(1+my)x(m>0,y>0).
(1)當(dāng)m=2時,求f(7,y)的展開式中二項式系數(shù)最大的項;
(2)已知f(2n,y)的展開式中各項的二項式系數(shù)和比f(n,y)的展開式中各項的二項式系數(shù)和大992,若f(n,y)=a0+a1y+…+anyn,且a2=40,求$\sum_{i=1}^n{ai}$;
(3)已知正整數(shù)n與正實數(shù)t,滿足$f({n,1})={m^n}f({n,\frac{1}{t}})$,求證:$f({2017,\frac{1}{{1000\sqrt{t}}}})>6f({-2017,\frac{1}{t}})$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知等比數(shù)列{an}滿足a1=2,a2=4(a3-a4),數(shù)列{bn}滿足bn=3-2log2an
(1)求數(shù)列{an},{bn}的通項公式;
(2)令cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項和Sn;
(3)若λ>0,求對所有的正整數(shù)n都有2λ2-kλ+2>a2nbn成立的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x3-ax在(-1,1)上單調(diào)遞減,則實數(shù)a的取值范圍為( 。
A.(1,+∞)B.[3,+∞)C.(-∞,1]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1=-10,a3+a5=-8,則當(dāng)Sn取最小值時,n等于(  )
A.5B.6C.5或6D.11

查看答案和解析>>

同步練習(xí)冊答案