A. | f(-$\frac{π}{3}$)>f(-1)>f($\frac{π}{11}$) | B. | f(-1)>f(-$\frac{π}{3}$)>f($\frac{π}{11}$) | C. | f(-$\frac{π}{11}$)>f(-1)>f($\frac{π}{3}$) | D. | f($\frac{π}{3}$)>f($\frac{π}{11}$)>f(-1) |
分析 根據(jù)y=xsinx是偶函數(shù),可得f(-$\frac{π}{3}$)=f($\frac{π}{3}$),又x∈[0,$\frac{π}{2}$]時,得y′>0,所以此時函數(shù)是增函數(shù),從而得到f($\frac{π}{11}$),f(-1),f(-$\frac{π}{3}$)的大小關(guān)系.
解答 解:因?yàn)閥=xsinx,是偶函數(shù),f(-$\frac{π}{3}$)=f($\frac{π}{3}$),又x∈[0,$\frac{π}{2}$]時,
得y′=sinx+xcosx>0,所以此時函數(shù)是增函數(shù),
所以f($\frac{π}{11}$)<f(1)<f($\frac{π}{3}$)=f(-$\frac{π}{3}$),
故選:A.
點(diǎn)評 本題主要考查正弦函數(shù)的單調(diào)性,奇偶性,導(dǎo)數(shù)的應(yīng)用,考查計算能力,導(dǎo)數(shù)大于0,函數(shù)是增函數(shù),是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{2}$) | B. | [0,1] | C. | ($\frac{1}{2}$,1] | D. | ($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$ | B. | $[{2kπ+\frac{5π}{12},2kπ+\frac{11π}{12}}](k∈Z)$ | ||
C. | $[{kπ+\frac{5π}{12},kπ+\frac{11π}{12}}](k∈Z)$ | D. | $[{2kπ+\frac{π}{6},2kπ+\frac{2π}{3}}](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow$) | B. | $\frac{1}{2}$($\overrightarrow{a}$-$\overrightarrow$) | C. | $\frac{1}{2}$($\overrightarrow$-$\overrightarrow{a}$) | D. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,+∞) | B. | $[{\sqrt{3}\;,\;+∞})$ | C. | $[{\sqrt{2}\;,\;+∞})$ | D. | $[{\frac{{\sqrt{5}+1}}{2}\;,\;+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
廣告費(fèi)用x(萬元) | 1 | 2 | 4 | 5 |
銷售額y(萬元) | 10 | 26 | 35 | 49 |
A. | 55萬元 | B. | 53萬元 | C. | 57萬元 | D. | 59萬元 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com