14.已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間.
(2)當(dāng)a=1且k∈Z時(shí),不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

分析 (1)求出函數(shù)f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)問題轉(zhuǎn)化為k<$\frac{x+xlnx}{x-1}$對(duì)任意x>1恒成立,令g(x)=$\frac{x+xlnx}{x-1}$,根據(jù)函數(shù)的單調(diào)性求出k的最大值即可.

解答 解:(1)∵a=2,∴f(x)=2x+xlnx,定義域?yàn)椋?,+∞),
∴f′(x)=3+lnx,由f′(x)>0得到x>e-3,由f′(x)<0得到x<e-3
∴函數(shù)f(x)=2x+xlnx的增區(qū)間為(e-3,+∞),減區(qū)間為(0,e-3).
(2)當(dāng)x>1時(shí),x-1>0,故不等式k(x-1)<f(x)?k<$\frac{f(x)}{x-1}$,
即k<$\frac{x+xlnx}{x-1}$對(duì)任意x>1恒成立.
令g(x)=$\frac{x+xlnx}{x-1}$,則g′(x)=$\frac{x-lnx-2}{{(x-1)}^{2}}$,
令h(x)=x-lnx-2(x>1),
則h′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$>0⇒h(x)在(1,+∞)上單增.
∵h(yuǎn)(3)=1-ln3<0,h(4)=2-ln4>0,
∴存在x0∈(3,4)使h(x0)=0,
即當(dāng)1<x<x0時(shí),h(x)<0,即g′(x)<0,
當(dāng)x>x0時(shí),h(x)>0,即g′(x)>0,
∴g(x)在(1,x0)上單減,在(x0,+∞)上單增.
令h(x0)=x0-lnx0-2=0,即lnx0=x0-2,
g(x)min=g(x0)=$\frac{{x}_{0}(1+l{nx}_{0})}{{x}_{0}-1}$=$\frac{{x}_{0}(1{+x}_{0}-2)}{{x}_{0}-1}$=x0∈(3,4),
∴k<g(x)min=x0且k∈Z,
即kmax=3.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,考查導(dǎo)數(shù)的應(yīng)用,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)對(duì)高三年級(jí)進(jìn)行身高統(tǒng)計(jì),測(cè)量隨機(jī)抽取的20名學(xué)生的身高,其頻率分布直方圖如圖(單位:cm)
(1)求a的值
(2)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計(jì)值和平均數(shù)的估計(jì)值.
(3)在身高為140-160的學(xué)生中任選2個(gè),求至少有一人的身高在150-160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知在三棱錐P-ABC中,VP-ABC=$\frac{4\sqrt{3}}{3}$,∠APC=$\frac{π}{4}$,∠BPC=$\frac{π}{3}$,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱錐P-ABC外接球的體積為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓柱的軸截面是正方形,且軸截面面積是5,則它的側(cè)面積是( 。
A.πB.C.10πD.20π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=x${\;}^{\frac{1}{2}}$C.f(x)=3xD.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}(3a-2)x+6a-1(x<1)\\{a^x}(x≥1)\end{array}\right.$單調(diào)遞減,那么實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{2}{3}$)C.[$\frac{3}{8}$,$\frac{2}{3}$)D.[$\frac{3}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-1,x>0}\\{\frac{3}{2}x+1,x≤0}\end{array}\right.$若m<n,且f(m)=f(n),則n-m的取值范圍是(  )
A.[ln2,ln$\frac{3}{2}$+$\frac{1}{3}$]B.(ln2,ln$\frac{3}{2}$+$\frac{1}{3}$)C.($\frac{2}{3}$,ln2]D.($\frac{2}{3}$,ln$\frac{3}{2}$+$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若4x=9y=6,則$\frac{1}{x}+\frac{1}{y}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是偶函數(shù),它在[0,+∞)上是減函數(shù),若f(lgx)>f(1),則x的取值范圍是(  )
A.$({\frac{1}{10},1})$B.$({\frac{1}{10},10})$C.$({0,\frac{1}{10}})∪({1,+∞})$D.(0,1)∪(10,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案