【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB垂直于AD和BC,平面SAB⊥底面ABCD,且SA=SB= ,AD=1,AB=2,BC=3.

(1)求證:SB⊥平面SAD;
(2)求二面角D﹣SC﹣B的余弦值.

【答案】
(1)證明:∵平面SAB⊥底面ABCD,面SAB∩平面ABCD=AB,

DA⊥AB,DA面ABCD,

∴DA⊥平面SAB,SB平面SAB,∴SB⊥AD,

又SA=SB= ,AB=2,∴SA⊥SB,SA∩AD=A,

∴SB⊥平面SAD.


(2)解:過點(diǎn)S作SO⊥AB于O,則SO⊥底面ABCD,

過O作OE∥AD,

以O(shè)為原點(diǎn),OA,OE,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,

則A(1,0,0),B(﹣1,0,0),C(﹣1,3,0),D(1,1,0),S(0,0,1),

=(1,1,﹣1), =(﹣2,2,0),

設(shè)平面SCD的一個(gè)法向量 =(x,y,z),

,取x=1,得 =(1,1,2),

設(shè)平面SBC的一個(gè)法向量為 =(a,b,c),

=(﹣1,0,﹣1), =(0,3,0),

,取a=1,得 =(1,0,﹣1),

cos< >= = =﹣ ,

由圖形得二面角D﹣SC﹣B的平面角是鈍角,

∴二面角D﹣SC﹣B的余弦值為﹣


【解析】(1)推導(dǎo)出SB⊥AD,SA⊥SB,由此能證明SB⊥平面SAD.(2)以O(shè)為原點(diǎn),OA,OE,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角D﹣SC﹣B的余弦值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面垂直的判定(一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形, , , ,四邊形為矩形,平面平面, .

1)求證: 平面;

2)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進(jìn)入21世紀(jì)以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬件之間的關(guān)系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數(shù)模型之一:f(x)=axb,f(x)=2xa,f(x)=logxa.

(1)找出你認(rèn)為最適合的函數(shù)模型,并說明理由,然后選取其中你認(rèn)為最適合的數(shù)據(jù)求出相應(yīng)的解析式;

(2)因遭受某國對(duì)該產(chǎn)品進(jìn)行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計(jì)減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)的定義域是,對(duì)任意

當(dāng)時(shí),.關(guān)于函數(shù)給出下列四個(gè)命題:

①函數(shù)是奇函數(shù);

②函數(shù)是周期函數(shù);

③函數(shù)的全部零點(diǎn)為;

④當(dāng)時(shí),函數(shù)的圖象與函數(shù)的圖象有且只有三個(gè)公共點(diǎn).

其中真命題的個(gè)數(shù)為

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),且f′(x)=sin2x﹣ cos2x,則下列說法正確的是(
A.y=f(x)的周期為
B.y=f(x)在[0, ]上是減函數(shù)
C.y=f(x)的圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2分別是橢圓 的左、右焦點(diǎn)F1 , F2關(guān)于直線x+y﹣2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(1)求圓C的方程;
(2)設(shè)過點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)的圖像經(jīng)過點(diǎn),且在區(qū)間單調(diào)遞減,又知函數(shù)為偶函數(shù),則關(guān)于的不等式的解為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an1xn1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時(shí),當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1的值為(

A.5
B.16
C.15
D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷并證明函數(shù)的奇偶性;

(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;

(3)若定義域?yàn)?/span>,解不等式.

【答案】(1)奇函數(shù)(2)增函數(shù)(3)

【解析】試題分析:1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-11)為單調(diào)函數(shù),

原不等式變形為f(2x-1)<-f(x),f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。

試題解析:1)函數(shù)為奇函數(shù).證明如下:

定義域?yàn)?/span>

為奇函數(shù)

2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:

任取,則

,

在(-1,1)上為增函數(shù)

3由(1)、(2)可得

解得:

所以,原不等式的解集為

點(diǎn)睛

(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。

(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號(hào),下結(jié)論五個(gè)步驟。

型】解答
結(jié)束】
22

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實(shí)數(shù)的值;

(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案