14.函數(shù)f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的極值點的位置有( 。
A.0個B.1個C.2個D.3個

分析 求導數(shù)得出$f′(x)=\frac{\frac{2}{3}-x}{{x}^{\frac{1}{3}}{e}^{x}}$,這樣根據(jù)導數(shù)在區(qū)間[-2,2]上的符號便可得出f(x)的極值點,從而找出正確選項.

解答 解:$f′(x)=\frac{\frac{2}{3}•\frac{1}{{x}^{\frac{1}{3}}}-{x}^{\frac{2}{3}}}{{e}^{x}}$=$\frac{\frac{2}{3}-x}{{x}^{\frac{1}{3}}{e}^{x}}$;
∴-2≤x<0時,f′(x)<0,$0<x<\frac{2}{3}$時,f′(x)>0,$\frac{2}{3}<x≤2$時,f′(x)<0;
∴$x=\frac{2}{3}$是f(x)唯一的極值點.
故選B.

點評 考查商的導數(shù)的計算公式,函數(shù)極值點的定義及求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=x+$\frac{1}{ax}$在(-∞,-1)上單調(diào)遞增,則實數(shù)a的取值范圍是(-∞,0)∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4,則函數(shù)的極小值為-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-x2-x-a.
(1)求f(x)的極值;
(2)若函數(shù)f(x)有且只有一個零點,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+bx為奇函數(shù),且在x=4處取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)在[-5,6]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,x∈(0,e],(e是自然對數(shù)的底數(shù)),a∈R.
(1)討論當a=1時,f(x)的極值;
(2)在(1)的條件下,證明:f(x)>g(x)+$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.5個人分4張無座足球票,每人至多分一張,而且必須分完,不同的分發(fā)種數(shù)有( 。
A.$A_5^4$種B.45C.$C_5^4$種D.54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,則|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知實數(shù)x,y的取值如表所示.
x01234
y12465
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
注:回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

同步練習冊答案