分析 若函數(shù)f(x)=x+$\frac{1}{ax}$在(-∞,-1)上單調(diào)遞增,則f′(x)=1-$\frac{1}{{ax}^{2}}$≥0在(-∞,-1)上恒成立,構(gòu)造函數(shù)將問(wèn)題轉(zhuǎn)化為最值問(wèn)題,可得答案.
解答 解:∵函數(shù)f(x)=x+$\frac{1}{ax}$在(-∞,-1)上單調(diào)遞增,
∴f′(x)=1-$\frac{1}{{ax}^{2}}$≥0在(-∞,-1)上恒成立,
即$\frac{1}{a}$≤x2在(-∞,-1)上恒成立,
即$\frac{1}{a}$≤1,
解得:a∈(-∞,0)∪[1,+∞),
故答案為:(-∞,0)∪[1,+∞)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)恒成立問(wèn)題,函數(shù)的最值及幾何意義,分式不等式的解法,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | 1或2 | C. | 1 | D. | 1或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | $\frac{3\sqrt{3}}{2}$ | D. | $\frac{3\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com