【題目】設(shè)函數(shù),則下列命題中正確的個數(shù)是(

①當(dāng)時,函數(shù)上有最小值;②當(dāng)時,函數(shù)是單調(diào)增函數(shù);③若,則;④方程可能有三個實數(shù)根.

A.1B.2C.3D.4

【答案】C

【解析】

當(dāng)b0時,把函數(shù)fx)=|x|x-bx+cx0x0兩種情況討論,轉(zhuǎn)化為二次函數(shù)判單調(diào)性,求最值即可;

當(dāng)b0時,判斷fx)在是單調(diào)增函數(shù)加以判斷;

③推導(dǎo)fx)+ f(-x)=2c即可求解;

bc取特值求方程fx)=0有三個實數(shù)根,故可判斷.

當(dāng)b0時,fx)=|x|x-bx+c,知函數(shù)fx)在上是單調(diào)減函數(shù),在, 上是單調(diào)增函數(shù),故函數(shù)上無最小值;故①錯誤;

當(dāng)b0時,①知函數(shù)fx)在是單調(diào)增函數(shù),且函數(shù)在處連續(xù),則是單調(diào)增函數(shù);故②正確

fx)+ f(-x)=2c,故若,則;故③正確

b3,c2,則fx)=|x|x3x+20,解得x1,2, .故正確.

故正確的為②③④

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形和四邊形都是正方形,且邊長為,的中點.

(1)求證:直線平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(20)班共50名學(xué)生,在期中考試中,每位同學(xué)的數(shù)學(xué)考試分數(shù)都在區(qū)間內(nèi),將該班所有同學(xué)的考試分數(shù)分為七個組:,,,,,,,繪制出頻率分布直方圖如圖所示.

(1)根據(jù)頻率分布直方圖,估計這次考試學(xué)生成績的中位數(shù)和平均數(shù);

(2)已知成績?yōu)?04分或105分的同學(xué)共有3人,現(xiàn)從成績在中的同學(xué)中任選2人,則至少有1人成績不低于106分的概率為多少?(每位同學(xué)的成績都為整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)

1)當(dāng)時,解不等式;

2)若存在實數(shù),使得不等式成立,求實的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓過點且與圓相切,設(shè)圓心的軌跡為曲線

(1)求曲線的方程;

(2)點為曲線上的兩點(不與點重合),記直線的斜率分別為,若,請判斷直線是否過定點. 若過定點,求該定點坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若,則稱的“不動點”;若,則稱的“穩(wěn)定點”.函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為,即,

)設(shè)函數(shù),求集合

)求證:

)設(shè)函數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形為直角梯形, ,四邊形為矩形,且 , 的中點.

(1)求證: 平面

(2)若,求平面與平面所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若時,求函數(shù)的最小值;

(2)若,證明:函數(shù)有且只有一個零點;

(3)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案