5.在△ABC中,角A,B,C所對的邊分別為a,b,c,且accosB-bccosA=3b2
(1)求$\frac{sinA}{sinB}$的值;
(2)若角C為銳角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面積.

分析 (1)根據(jù)余弦公式求出a2=4b2,根據(jù)正弦定理求出$\frac{sinA}{sinB}$的值即可;
(2)求出cosC的值,得到$\frac{{a}^{2}{+b}^{2}-11}{2ab}$=$\frac{1}{3}$以及$\frac{sinA}{sinB}$=$\frac{a}$=2,求出a,b的值,求出三角形的面積即可.

解答 解:(1)∵accosB-bccosA=3b2,
∴$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2}$-$\frac{^{2}{+c}^{2}{-a}^{2}}{2}$=3b2
∴a2-b2=3b2,
∴a2=4b2,
∴$\frac{{sin}^{2}A}{{sin}^{2}B}$=4,∴$\frac{sinA}{sinB}$=2;
(2)若角C為銳角,sinC=$\frac{2\sqrt{2}}{3}$,
∴cosC>0,
∴cosC=$\sqrt{1-\frac{8}{9}}$=$\frac{1}{3}$,
∴$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{1}{3}$,
∴$\frac{{a}^{2}{+b}^{2}-11}{2ab}$=$\frac{1}{3}$①,
由(1)得,$\frac{sinA}{sinB}$=$\frac{a}$=2②,
聯(lián)立①②得:b=$\sqrt{3}$,a=2$\sqrt{3}$,
∴S=$\frac{1}{2}$absinC=$\frac{1}{2}$•2$\sqrt{3}$•$\frac{2\sqrt{2}}{3}$=2$\sqrt{2}$.

點評 本題考查了正弦定理以及余弦定理的應(yīng)用,考查三角形的面積公式,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a=20.1,$b={({\frac{1}{2}})^{-0.4}}$,c=2log72,則a,b,c的大小關(guān)系為(  )
A.c<a<bB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合M={1,2},N={2,3},則集合M∪N真子集的個數(shù)是.( 。
A.7B.8C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知e是自然對數(shù)的底數(shù),實數(shù)a是常數(shù),函數(shù)f(x)=ex-ax-1的定義域為(0,+∞).
(1)設(shè)a=e,求函數(shù)f(x)在切點(1,f(1))處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)設(shè)g(x)=ln(ex+$\frac{e}{3}$x3-1)-lnx,若?x>0,f(g(x))<f(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,如果輸入的n=32,那么輸出的M=(  )
A.66B.65C.64D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某中學(xué)是走讀中學(xué),為了讓學(xué)生更有效率利用下午放學(xué)后的時間,學(xué)校在本學(xué)期第一次月考后設(shè)立了多間自習(xí)室,以便讓學(xué)生在自習(xí)室自主學(xué)習(xí)、完成作業(yè),同時每天派老師輪流值班.在本學(xué)期第二次月考后,高一某班數(shù)學(xué)老師統(tǒng)計了兩次考試該班數(shù)學(xué)成績優(yōu)良人數(shù)和非優(yōu)良人數(shù),得到如下2×2列聯(lián)表:
非優(yōu)良優(yōu)良總計
未設(shè)立自習(xí)室251540
設(shè)立自習(xí)室103040
總計354580
(1)能否在在犯錯誤的概率不超過0.005的前提下認(rèn)為設(shè)立自習(xí)室對提高學(xué)生成績有效;
(2)設(shè)從該班第一次月考的所有學(xué)生的數(shù)學(xué)成績中任取2個,取到優(yōu)良成績的個數(shù)為X,從該班第二次月考的所有學(xué)生的數(shù)學(xué)成績中任取2個,取到優(yōu)良成績的個數(shù)為Y,求X與Y的期望并比較大小,請解釋所得結(jié)論的實際意義.
下面的臨界值表供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,已知AB=2,AC2-BC2=6,則tanC的最大值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實數(shù)x,y滿足不等式$\left\{\begin{array}{l}{2x+y+2≥0}\\{x+y-1≤0}\\{y≥-2}\end{array}\right.$,則x-y的最大值為( 。
A.-5B.2C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓E:x2+3y2=m2(m>0)的左頂點是A,左焦點為F,上頂點為B.
(1)當(dāng)△AFB的面積為$\frac{\sqrt{3}-\sqrt{2}}{2}$時,求m的值;
(2)若直線l交橢圓E于M,N兩點(不同于A),以線段MN為直徑的圓過A點,試探究直線l是否過定點,若存在定點,求出這個定點的坐標(biāo),若不存在定點,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案