16.已知復數(shù)z=m+2i,且(2+i)z是純虛數(shù),則實數(shù)m=(  )
A.1B.2C.-1D.-2

分析 把復數(shù)z=m+2i代入(2+i)z,然后利用復數(shù)代數(shù)形式的乘法運算化簡,再由已知條件列出方程組,求解可得答案.

解答 解:∵(2+i)z=(2+i)(m+2i)=2m+4i+mi+2i2=(2m-2)+(m+4)i為純虛數(shù),
∴$\left\{\begin{array}{l}{2m+2=0}\\{m+4≠0}\end{array}\right.$,
解得m=1.
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個不同的非零實根x1,x2
(1)求證:x1+x2<-2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+3a-λb=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知兩點A(3,2),B(-1,2),圓C以線段AB為直徑.
(Ⅰ)求圓C的方程;
(Ⅱ)求過點M(3,1)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,CA=CB,側面ABB1A1是邊長為2的正方形,點E,F(xiàn)分別在線段AAl,A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF,M為AB中點
( I)證明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.閱讀如圖的程序框圖,運行相應的程序,則輸出的值為( 。
A.3B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設向量$\overrightarrow a=(1,\sqrt{3}),\overrightarrow b=(m,\sqrt{3})$,且$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$,則m=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-a|+|2x-1|.
(Ⅰ)當a=1時,解不等式f(x)≥2;
(Ⅱ)求證:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.方程xy(x+y)=1所表示的曲線( 。
A.關于x軸對稱B.關于y軸對稱C.關于原點對稱D.關于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若直線2x+y-4=0,x+ky-3=0與兩坐標軸圍成的四邊形有外接圓,則此四邊形的面積為( 。
A.$\frac{11}{4}$B.$\frac{5\sqrt{5}}{4}$C.$\frac{41}{20}$D.5

查看答案和解析>>

同步練習冊答案