【題目】(1)在中,內(nèi)角,,的對(duì)邊分別為,,,且,證明:;
(2)已知結(jié)論:在直角三角形中,若兩直角邊長(zhǎng)分別為,,斜邊長(zhǎng)為,則斜邊上的高.若把該結(jié)論推廣到空間:在側(cè)棱互相垂直的四面體中,若三個(gè)側(cè)面的面積分別為,,,底面面積為,則該四面體的高與,,,之間的關(guān)系是什么?(用,,,表示)
【答案】(1)見(jiàn)解析.
(2) .
【解析】分析:(1)首先根據(jù)題中的條件,求得,從而可以將所要證明的式子轉(zhuǎn)化,應(yīng)用分析法證得結(jié)果;
(2)根據(jù)題中的條件,類(lèi)比著平面三角形的面積,可以推出空間幾何體三棱錐的體積對(duì)應(yīng)的結(jié)果,在解題的過(guò)程中,注意將三棱錐的側(cè)面面積分別寫(xiě)出來(lái),應(yīng)用體積公式以及各個(gè)方程之間的關(guān)系,從而求得結(jié)果.
詳解:(1)證明:由,得,則.
要證,
只需證,
即證,
只需證,即證.
而,顯然成立,故.
(2)解:記該四面體的三條側(cè)棱長(zhǎng)分別為,,,
不妨設(shè),,,
由,
得,
于是 ,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機(jī)地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計(jì) | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計(jì) | ③ | ④ | 90 |
(1)求①②③④處分別對(duì)應(yīng)的值;
(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB的中點(diǎn)為O,且OA=1,點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,且 .固定邊AB,在平面內(nèi)移動(dòng)頂點(diǎn)C,使得圓M與邊BC,邊AC的延長(zhǎng)線(xiàn)相切,并始終與AB的延長(zhǎng)線(xiàn)相切于點(diǎn)D,記頂點(diǎn)C的軌跡為曲線(xiàn)Γ.以AB所在直線(xiàn)為x軸,O為坐標(biāo)原點(diǎn)如圖所示建立平面直角坐標(biāo)系.
(Ⅰ)求曲線(xiàn)Γ的方程;
(Ⅱ)設(shè)動(dòng)直線(xiàn)l交曲線(xiàn)Γ于E、F兩點(diǎn),且以EF為直徑的圓經(jīng)過(guò)點(diǎn)O,求△OEF面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=ex+2x2-3x.
(1)求證:函數(shù)f (x)在區(qū)間[0,1]上存在唯一的極值點(diǎn).
(2)當(dāng)x≥時(shí),若關(guān)于x的不等式f (x)≥ x2+(a-3)x+1恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦期間,某轎車(chē)銷(xiāo)售商為了促銷(xiāo),給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿(mǎn)萬(wàn)元,可減千元;方案二:金額超過(guò)萬(wàn)元(含萬(wàn)元),可搖號(hào)三次,其規(guī)則是依次裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的一個(gè)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的二號(hào)搖號(hào)機(jī),裝有個(gè)幸運(yùn)號(hào)、個(gè)吉祥號(hào)的三號(hào)搖號(hào)機(jī)各搖號(hào)一次,其優(yōu)惠情況為:若搖出個(gè)幸運(yùn)號(hào)則打折,若搖出個(gè)幸運(yùn)號(hào)則打折;若搖出個(gè)幸運(yùn)號(hào)則打折;若沒(méi)有搖出幸運(yùn)號(hào)則不打折.
(1)若某型號(hào)的車(chē)正好萬(wàn)元,兩個(gè)顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
(2)若你評(píng)優(yōu)看中一款價(jià)格為萬(wàn)的便型轎車(chē),請(qǐng)用所學(xué)知識(shí)幫助你朋友分析一下應(yīng)選擇哪種付款方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合是滿(mǎn)足下列條件的函數(shù)的全體:在定義域內(nèi)存在實(shí)數(shù),使得成立.
(Ⅰ)判斷冪函數(shù)是否屬于集合?并說(shuō)明理由;
(Ⅱ)設(shè), ,
i)當(dāng)時(shí),若,求的取值范圍;
ii)若對(duì)任意的,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究某班學(xué)生的腳長(zhǎng)x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線(xiàn)性相關(guān)關(guān)系,設(shè)其回歸直線(xiàn)方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高為( 。
A.160
B.163
C.166
D.170
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線(xiàn)的極坐標(biāo)方程為
(1)當(dāng)時(shí),判斷直線(xiàn)與圓的關(guān)系;
(2)當(dāng)上有且只有一點(diǎn)到直線(xiàn)的距離等于時(shí),求上到直線(xiàn)距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn) : 過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),設(shè)
(1)若點(diǎn) 關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求證:直線(xiàn)經(jīng)過(guò)拋物線(xiàn) 的焦點(diǎn);
(2)若求當(dāng)最大時(shí),直線(xiàn)的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com