【題目】已知集合是滿足下列條件的函數(shù)的全體:在定義域內存在實數(shù),使得成立.
(Ⅰ)判斷冪函數(shù)是否屬于集合?并說明理由;
(Ⅱ)設, ,
i)當時,若,求的取值范圍;
ii)若對任意的,都有,求的取值范圍.
【答案】(1) (2)
【解析】試題(1)根據(jù)條件 ,得到 ,解出x的值即可;(2) i)當時,根據(jù)及對數(shù)的運算,求出關于a的方程,再根據(jù)方程有解的條件求出a的取值范圍;ii)同i)得到根據(jù)方程有解得到關于a的不等關系,解之即可.
試題解析:
(Ⅰ),理由如下:
令,則
,即,
解得: , 均滿足定義域.
當時,
(Ⅱ)當時,
, ,
由題知: 在上有解
,令,則
即
,
從而,原問題等價于或
或
又在上恒成立
,
另解:原問題等價于在上有解
令,
由根的分布知: 或
解得: 或
又,
當或時,經(jīng)檢驗僅滿足條件
ii)由i)知:對任意, 在上有解
,即
,令,則
則在上有解
令, ,則
,即
由可得: ,令,則
, , .
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線:,曲線: .以極點為坐標原點,極軸為軸正半軸建立直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求,的直角坐標方程;
(2)與,交于不同四點,這四點在上的排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)在中,內角,,的對邊分別為,,,且,證明:;
(2)已知結論:在直角三角形中,若兩直角邊長分別為,,斜邊長為,則斜邊上的高.若把該結論推廣到空間:在側棱互相垂直的四面體中,若三個側面的面積分別為,,,底面面積為,則該四面體的高與,,,之間的關系是什么?(用,,,表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕頭某通訊設備廠為適應市場需求,提高效益,特投入98萬元引進世界先進設備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設備可獲得的年利潤為50萬元.
請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設備多少年后,收回成本并開始盈利?(2)引進該設備若干年后,有兩種處理方案:第一種:年平均盈利達到最大值時,以26萬元的價格賣出;第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個三位自然數(shù)的百位,十位,個位上的數(shù)字依次為,當且僅當且時稱為“凹數(shù)”.若,且互不相同,任取一個三位數(shù),則它為“凹數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校某次N名學生的學科能力測評成績(滿分120分)的頻率分布直方圖如下,已知分數(shù)在100﹣110的學生數(shù)有21人
(1)求總人數(shù)N和分數(shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準備從分數(shù)在110﹣115的n名學生(女生占 )中選3位分配給A老師進行指導,設隨機變量ξ表示選出的3位學生中女生的人數(shù),求ξ的分布列與數(shù)學期望Eξ;
(3)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導建議,對他前7次考試的數(shù)學成績x、物理成績y進行分析,該生7次考試成績如表
數(shù)學(x) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理(y) | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績y與數(shù)學成績x是線性相關的,求出y關于x的線性回歸方程 = x+ .若該生的數(shù)學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計分別為 = , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com