【題目】汕頭某通訊設(shè)備廠為適應(yīng)市場需求,提高效益,特投入98萬元引進世界先進設(shè)備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元.

請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設(shè)備多少年后,收回成本并開始盈利?(2)引進該設(shè)備若干年后,有兩種處理方案:第一種:年平均盈利達到最大值時,以26萬元的價格賣出;第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.

【答案】解:(1)設(shè)引進設(shè)備n年后開始盈利,盈利為y萬元,

y=50n-(12n+×4)-98=2n2+40n98,由y0,得10n10+

∵n∈N*,∴3≤n≤17,即3年后開始盈利.…………………6

2)方案一:年平均盈利為,=2n+40≤2+40=12,

當且僅當2n=,即n=7時,年平均利潤最大,共盈利12×7+26=110萬元.

方案二:盈利總額y=2n102+102,n=10時,y取最大值102

即經(jīng)過10年盈利總額最大,

共計盈利102+8=110萬元.

兩種方案獲利相等,但由于方案二時間長,所以采用方案一合算.…………12

【解析】

試題(1)根據(jù)利潤等于收入-成本,可求利潤函數(shù),令其大于0,可得結(jié)論;

2)分別求出兩種處理方案的利潤,再進行比較,即可得到結(jié)論.

試題解析:(1)設(shè)引進設(shè)備n年后開始盈利,盈利為y萬元,

y=50n-(12n+×4)-98=2n2+40n98

y0,得10n10+

∵n∈N*,∴3≤n≤17,即3年后開始盈利.

2)方案一:年平均盈利為,=2n+40≤2+40=12

當且僅當2n=,即n=7時,年平均利潤最大,共盈利12×7+26=110萬元.

方案二:盈利總額y=2n102+102,n=10時,y取最大值102

即經(jīng)過10年盈利總額最大, 共計盈利102+8=110萬元.

兩種方案獲利相等,但由于方案二時間長,所以采用方案一合算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角三角形ABC的斜邊長AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當∠A=30°時,求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設(shè)點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合是滿足下列條件的函數(shù)的全體:在定義域內(nèi)存在實數(shù),使得成立.

)判斷冪函數(shù)是否屬于集合?并說明理由;

)設(shè),

i)當時,若,求的取值范圍;

ii)若對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓的方程為,點為圓上的動點,過點的直線被圓截得的弦長為

(1)求直線的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)為考察某種藥物預(yù)防疾病的效果,進行動物試驗,調(diào)查了105個樣本,統(tǒng)計結(jié)果為:服藥的共有55個樣本,服藥但患病的仍有10個樣本,沒有服藥且未患病的有30個樣本.

1)根據(jù)所給樣本數(shù)據(jù)完成2×2列聯(lián)表中的數(shù)據(jù);

2)請問能有多大把握認為藥物有效?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(Ⅱ)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學(xué)期望達到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的參數(shù)方程是 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,A、B的極坐標分別為A﹣(2,0)、B(﹣1,
(1)求直線AB的直角坐標方程;
(2)在曲線C上求一點M,使點M到AB的距離最大,并求出些最大值.

查看答案和解析>>

同步練習冊答案