【題目】已知直角三角形ABC的斜邊長AB="2," 現(xiàn)以斜邊AB為軸旋轉一周,得旋轉體,當∠A=30°時,求此旋轉體的體積與表面積的大小.
【答案】
【解析】試題由已知中直角三角形ABC的斜邊長AB=2,∠A=30°,判斷出以斜邊AB為軸旋轉一周,所得旋轉體的形狀是AB邊的高CO為底面半徑的兩個圓錐組成的組合體,計算出底面半徑及兩個圓錐高的和,代入圓錐體積公式,即可求出旋轉體的體積;該幾何體的表面積是兩個圓錐的側面積之和,分別計算出兩個圓錐的母線長,代入圓錐側面積公式,即可得到答案.
如圖以斜邊AB為軸旋轉一周,得旋轉體是以AB邊的高CO為底面半徑的兩個圓錐組成的組合體
∵AB=2,∠A=30°
∴CB=sin30°AB=1,CA=cos30°AB=,
CO==
故此旋轉體的體積V=πr2h=πCO2AB=
(2)又∵CB=1,CA=,
故此旋轉體的表面積
S=πr(l+l′)=πCO(AC+BC)=(3+)π.
科目:高中數(shù)學 來源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系中,曲線的參數(shù)方程為(為參數(shù));在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,曲線:,曲線: .以極點為坐標原點,極軸為軸正半軸建立直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求,的直角坐標方程;
(2)與,交于不同四點,這四點在上的排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,平面中兩條直線和相交于點O,對于平面上任意一點M,若x,y分別是M到直線和的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標”為(p,q)的點有且只有2個;
③若pq≠0則“距離坐標”為(p,q)的點有且只有4個.
上述命題中,正確命題的是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校對校園進行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設每棵樹成活與否是相互獨立的.求:
(Ⅰ)兩種樹各成活一株的概率;
(Ⅱ)設ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汕頭某通訊設備廠為適應市場需求,提高效益,特投入98萬元引進世界先進設備奔騰6號,并馬上投入生產.第一年需要的各種費用是12萬元,從第二年開始,所需費用會比上一年增加4萬元,而每年因引入該設備可獲得的年利潤為50萬元.
請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進該設備多少年后,收回成本并開始盈利?(2)引進該設備若干年后,有兩種處理方案:第一種:年平均盈利達到最大值時,以26萬元的價格賣出;第二種:盈利總額達到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com