【題目】已知隨機變量ξ的概率分布列為:

ξ

0

1

2

P

則Eξ= , Dξ=

【答案】1;
【解析】解:由隨機變量ξ的概率分布列,知: Eξ= =1,
Dξ=(0﹣1)2× +(1﹣1)2× +(2﹣1)2× =
所以答案是:1,
【考點精析】利用離散型隨機變量及其分布列對題目進行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設(shè)離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓相交;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓相離;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓相切.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)),以為極點, 軸的非負半軸為極軸建立極坐標系.

(1)求曲線的普通方程;

(2)極坐標方程為的直線, 兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若變量x,y滿足約束條件 ,且z=ax+3y的最小值為7,則a的值為(
A.1
B.2
C.﹣2
D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在亞丁灣海域執(zhí)行護航任務(wù)的中國海軍“徐州”艦,在A處收到某商船在航行中發(fā)出求救信號后,立即測出該商船在方位角方位角(是從某點的指北方向線起,依順時針方向到目標方向線之間的水平夾角)為45°、距離A處為10 n mile的C處,并測得該船正沿方位角為105°的方向,以9 n mile/h的速度航行,“徐州”艦立即以21 n mile/h的速度航行前去營救.

(1)“徐州”艦最少需要多少時間才能靠近商船?

(2)在營救時間最少的前提下,“徐州”艦應(yīng)按照怎樣的航行方向前進?(角度精確到0.1°,時間精確到1min,參考數(shù)據(jù):sin68.2°≈0.9286)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每件一等品都能通過檢測,每件二等品通過檢測的概率為.現(xiàn)有件產(chǎn)品,其中件是一等品, 件是二等品.

(Ⅰ)隨機選取件產(chǎn)品,設(shè)至少有一件通過檢測為事件,求事件的概率;

(Ⅱ)隨機選取件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為3的正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖(1)將△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,連結(jié)A1B、A1P(如圖(2)).
(1)求證:A1E⊥平面BEP;
(2)求二面角B﹣A1P﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角三角形ABC的斜邊長AB="2," 現(xiàn)以斜邊AB為軸旋轉(zhuǎn)一周,得旋轉(zhuǎn)體,當∠A=30°時,求此旋轉(zhuǎn)體的體積與表面積的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

查看答案和解析>>

同步練習冊答案