【題目】執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的x值為7,第二次輸入的x值為9,則第一次,第二次輸出的a值分別為( 。

A.0,0
B.1,1
C.0,1
D.1,0

【答案】D
【解析】解:當(dāng)輸入的x值為7時(shí),
第一次,不滿足b2>x,也不滿足x能被b整數(shù),故b=3;
第二次,滿足b2>x,故輸出a=1;
當(dāng)輸入的x值為9時(shí),
第一次,不滿足b2>x,也不滿足x能被b整數(shù),故b=3;
第二次,不滿足b2>x,但滿足x能被b整數(shù),故輸出a=0
故選:D
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解算法的條件結(jié)構(gòu)的相關(guān)知識(shí),掌握條件P是否成立而選擇執(zhí)行A框或B框.無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時(shí)執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行.一個(gè)判斷結(jié)構(gòu)可以有多個(gè)判斷框,以及對算法的循環(huán)結(jié)構(gòu)的理解,了解在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量ξ的概率分布列為:

ξ

0

1

2

P

則Eξ= , Dξ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面中兩條直線相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若x,y分別是M到直線的距離,則稱有序非負(fù)實(shí)數(shù)對(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個(gè)命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個(gè);

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(pq的點(diǎn)有且只有2個(gè);

③若pq≠0則“距離坐標(biāo)”為p,q的點(diǎn)有且只有4個(gè).

上述命題中,正確命題的是______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對校園進(jìn)行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設(shè)每棵樹成活與否是相互獨(dú)立的.求:

Ⅰ)兩種樹各成活一株的概率;

Ⅱ)設(shè)ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀右面的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為24,則輸出N的值為( 。

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,,的中點(diǎn).

(1)求證:

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汕頭某通訊設(shè)備廠為適應(yīng)市場需求,提高效益,特投入98萬元引進(jìn)世界先進(jìn)設(shè)備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費(fèi)用是12萬元,從第二年開始,所需費(fèi)用會(huì)比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元.

請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進(jìn)該設(shè)備多少年后,收回成本并開始盈利?(2)引進(jìn)該設(shè)備若干年后,有兩種處理方案:第一種:年平均盈利達(dá)到最大值時(shí),以26萬元的價(jià)格賣出;第二種:盈利總額達(dá)到最大值時(shí),以8萬元的價(jià)格賣出.問哪種方案較為合算?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<a<b,且a+b=1,則下列不等式中正確的是(
A.log2a>0
B.2ab
C.log2a+log2b<﹣2
D.2 +

查看答案和解析>>

同步練習(xí)冊答案