A. | -$\frac{22}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{3}$ |
分析 運(yùn)用向量數(shù)量積的定義求得$\overrightarrow{AB}$•$\overrightarrow{AC}$,運(yùn)用向量中點(diǎn)的表示,求得$\overrightarrow{AD}$,再由向量的加減運(yùn)算可得$\overrightarrow{AM}$,可得$\overrightarrow{MB}$•$\overrightarrow{MC}$=($\overrightarrow{AB}$-$\overrightarrow{AM}$)•($\overrightarrow{AC}$-$\overrightarrow{AM}$),展開運(yùn)用向量的數(shù)量積的性質(zhì):向量的平方即為模的平方,計(jì)算即可得到所求值.
解答 解:AC=$\sqrt{2}$,AB=2,∠BAC=135°,
可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos∠BAC=2$\sqrt{2}$•(-$\frac{\sqrt{2}}{2}$)=-2,
D是BC的中點(diǎn),可得$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,即有$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AD}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
則$\overrightarrow{MB}$•$\overrightarrow{MC}$=($\overrightarrow{AB}$-$\overrightarrow{AM}$)•($\overrightarrow{AC}$-$\overrightarrow{AM}$)=($\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$)•($\frac{2}{3}$$\overrightarrow{AC}$-$\frac{1}{3}$$\overrightarrow{AB}$)
=-$\frac{2}{9}$$\overrightarrow{AB}$2-$\frac{2}{9}$$\overrightarrow{AC}$2+$\frac{5}{9}$$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{2}{9}$×4-$\frac{2}{9}$×2-$\frac{5}{9}$×2=-$\frac{22}{9}$.
故選:A.
點(diǎn)評(píng) 本題考查向量的加減運(yùn)算和向量中點(diǎn)的表示,以及向量數(shù)量積的定義和性質(zhì):向量的平方即為模的平方.考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |a+bi|=5 | B. | a+b=1 | C. | a-b=-17 | D. | ab=168 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,2) | B. | (0,2) | C. | (-∞,2) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知集合A=,全集U=R。
(1)當(dāng)時(shí),求和;
(2)若,求實(shí)數(shù)的取范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com