4.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$,目標(biāo)函數(shù)z=2x+y的最小值為-5,則實(shí)數(shù)a=-3.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)z=2x+y的最小值為-5,建立條件關(guān)系即可求出k的值.

解答 解:目標(biāo)函數(shù)z=2x+y的最小值為-5,
∴y=-2x+z,要使目標(biāo)函數(shù)z=2x+y的最小值為-5,
則平面區(qū)域位于直線y=-2x+z的右上方,可以求得2x+y=-5,
作出變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
則目標(biāo)函數(shù)經(jīng)過點(diǎn)A,
由$\left\{\begin{array}{l}{2x+y=-5}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),同時(shí)A也在直線x+y-a=0上,
即-2-1-a=0,
解得a=-3,
故答案為:-3.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)z=3x+y的最小值為-5,確定平面區(qū)域的位置,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的實(shí)數(shù)x都有f(-x)=f(x+2),且f(-1)=2,f(2)=-1.則f(1)+f(2)+f(3)+…+f(2017)的值為( 。
A.2017B.1010C.1008D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,bn=-1-log2|an|,數(shù)列{bn}的前n項(xiàng)和為Tn,cn=$\frac{_{n+1}}{{T}_{n}{T}_{n+1}}$.
(1)求數(shù)列{an}的通項(xiàng)公式與數(shù)列{cn}前n項(xiàng)和An;
(2)對(duì)任意正整數(shù)m、k,是否存在數(shù)列{an}中的項(xiàng)an,使得|Sm-Sk|≤32an成立?若存在,請(qǐng)求出正整數(shù)n的取值集合,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中點(diǎn),M是AD上一點(diǎn),且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,則$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是(  )
A.-$\frac{22}{9}$B.-$\frac{2}{9}$C.-$\frac{7}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0),點(diǎn)A、F分別為其右頂點(diǎn)和右焦點(diǎn),B1(0,b),B2(0,-b),若B1F⊥B2A,則該雙曲線的離心率為(  )
A.$1+\sqrt{5}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{5}+1}}{2}$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在平面直角坐標(biāo)系xOy中,圓O的方程為x2+y2=4,直線l的方程為y=k(x+2),若在圓O上至少存在三點(diǎn)到直線l的距離為1,則實(shí)數(shù)k的取值范圍是( 。
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{-\frac{1}{2},\frac{1}{2}}]$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.定義在R上的函數(shù)f(x)=2|x-m|-1為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)集合P={x∈N|x≤8},Q={x∈R||x-1|≤2},則P∩Q={0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的值域?yàn)椋?)

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案