分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)z=2x+y的最小值為-5,建立條件關(guān)系即可求出k的值.
解答 解:目標(biāo)函數(shù)z=2x+y的最小值為-5,
∴y=-2x+z,要使目標(biāo)函數(shù)z=2x+y的最小值為-5,
則平面區(qū)域位于直線y=-2x+z的右上方,可以求得2x+y=-5,
作出變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
則目標(biāo)函數(shù)經(jīng)過點(diǎn)A,
由$\left\{\begin{array}{l}{2x+y=-5}\\{x-y+1=0}\end{array}\right.$,解得A(-2,-1),同時(shí)A也在直線x+y-a=0上,
即-2-1-a=0,
解得a=-3,
故答案為:-3.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)z=3x+y的最小值為-5,確定平面區(qū)域的位置,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2017 | B. | 1010 | C. | 1008 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{22}{9}$ | B. | -$\frac{2}{9}$ | C. | -$\frac{7}{3}$ | D. | -$\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1+\sqrt{5}$ | B. | $\frac{{\sqrt{5}-1}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{0,\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | C. | $[{-\frac{1}{2},\frac{1}{2}}]$ | D. | $[{0,\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的值域?yàn)椋?)
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com