4.已知雙曲線x2-$\frac{{y}^{2}}{m}$=1的左右焦點分別為F1、F2,過點F2的直線交雙曲線右支于A、B兩點,若△ABF1是以A為直角頂點的等腰三角形,則實數(shù)m的值為4-2$\sqrt{2}$.

分析 由題意可知丨AF2丨=m,丨AF1丨=2+丨AF2丨=2+m,由等腰三角形的性質(zhì)即可求得4=$\sqrt{2}$(2+m),丨AF2丨=m=2($\sqrt{2}$-1),丨AF1丨=2$\sqrt{2}$,由三角的面積公式,即可求得△AF1F2的面積.

解答 解:雙曲線x2-$\frac{{y}^{2}}{m}$=1焦點在x軸上,a=1,2a=2,
設(shè)丨AF2丨=m,由丨AF1丨-丨AF2丨=2a=2,
∴丨AF1丨=2+丨AF2丨=2+m,
又丨AF1丨=丨AB丨=丨AF2丨+丨BF2丨=m+丨BF2丨,
∴丨BF2丨=2,又丨BF1丨-丨BF2丨=2,
丨BF1丨=4,
根據(jù)題意丨BF1丨=$\sqrt{2}$丨AF1丨,即4=$\sqrt{2}$(2+m),m=2($\sqrt{2}$-1),
丨AF1丨=2$\sqrt{2}$,
△AF1F2的面積S=$\frac{1}{2}$•丨AF2丨•丨AF1丨=$\frac{1}{2}$×2($\sqrt{2}$-1)×2$\sqrt{2}$=4-2$\sqrt{2}$,
△AF1F2的面積4-2$\sqrt{2}$,
故答案為:4-2$\sqrt{2}$.

點評 本題考查雙曲線的定義的應(yīng)用,考查等腰三角形的性質(zhì),考查三角形的面積公式,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.為了調(diào)查中學生課外閱讀古典文學名著的情況,某校學生會從男生中隨機抽取了50人,從女生中隨機抽取了60人參加古典文學名著知識競賽,統(tǒng)計數(shù)據(jù)如表所示,經(jīng)計算K2≈8.831,則測試成績是否優(yōu)秀與性別有關(guān)的把握為( 。
優(yōu)秀非優(yōu)秀總計
男生351550
女生253560
總計6050110
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知a>0,曲線f(x)=2ax2-$\frac{1}{ax}$在點(1,f(1))處的切線的斜率為k,則當k取最小值時a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點分別為F1、F2,焦距為2c(c>0),拋物線y2=2cx的準線交雙曲線左支于A,B兩點,且∠AOB=120°(O為坐標原點),則該雙曲線的離心率為( 。
A.$\sqrt{3}+1$B.2C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知直線a、b和平面β,有以下四個命題:
①若a∥β,a∥b,則b∥β;
②若a?β,b∩β=B,則a與b異面;
③若a⊥b,a⊥β,則b∥β;
④若a∥b,b⊥β,則a⊥β,
其中正確命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知的取值如表所示:
x234
y645
如果y與x線性相關(guān),且線性回歸方程$y=bx+\frac{13}{2}$,則$\stackrel{∧}$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{4}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知圓錐的表面積為6,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面半徑為(  )
A.$\sqrt{\frac{2}{π}}$B.$\sqrt{\frac{1}{π}}$C.$\sqrt{2π}$D.$\sqrt{π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$則$\frac{2y}{2x+1}$的取值范圍是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.拋物線y2=4x的焦點為F,經(jīng)過F的直線與拋物線在x軸上方的部分相交于點A,與準線l交于點B,且AK⊥l于K,如果|AF|=|BF|,那么△AKF的面積是4$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案