3.已知命題p:若$?x∈(-\frac{π}{2},0)$,tanx<0,命題q:?x0∈(0,+∞),${2^{x_0}}=\frac{1}{2}$,則下列命題為真命題的是
( 。
A.p∧qB.(¬p)∧(?q)C.p∧(¬q)D.(¬p)∧q

分析 根據(jù)三角函數(shù)的性質判斷p,根據(jù)指數(shù)函數(shù)的性質判斷命題q,從而求出復合命題的判斷.

解答 解:對于命題p,當$x∈(-\frac{π}{2}•0)$時,
由正切函數(shù)的圖象可知tanx<0,
所以命題p是真命題;
對于命題q,當x0>0時,2x0>1,
所以命題q是假命題;
于是p∧(?q)為真命題;
故選:C.

點評 本題考查了復合命題的判斷,考查指數(shù)函數(shù)以及三角函數(shù)的性質,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.若-2≤x≤2,則函數(shù)$f(x)={(\frac{1}{4})}^{x}-3•{(\frac{1}{2})}^{x}+2$的值域為[$-\frac{1}{4}$,6].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知正六邊形ABCDEF的邊長為2,沿對角線AE將△FAE的頂點F翻折到點P處,使得$PC=\sqrt{10}$.
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=x-\frac{a}{e^x}$.
(1)當a=-1時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在[0,1]上的最小值為$\frac{3}{2}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務督導員.從符合條件的600名志愿者中隨機抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計這600名志愿者中年齡在[30.40)的人數(shù);
(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺“文明伴你行”節(jié)目錄制,再從這10名志愿者中隨機選取3名到現(xiàn)場分享勸導制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系xOy中,拋物線C:x2=2py(p>0)的焦點為F,點A在C上,若|AO|=|AF|=$\frac{3}{2}$;
(Ⅰ)求C的方程;
(Ⅱ)設直線l與C交于P,Q,若線段PQ的中點的縱坐標為1,求△OPQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知拋物線y2=4x,過焦點F作直線與拋物線交于點A,B(點A在x軸下方),點A1與點A關于x軸對稱,若直線AB斜率為1,則直線A1B的斜率為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設△ABC 的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2sinBsinC=4sinA,則△ABC的面積為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知圓O:x2+y2=1過橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的短軸端點,P,Q分別是圓O與橢圓C上任意兩點,且線段PQ長度的最大值為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(0,t)作圓O的一條切線交橢圓C于M,N兩點,求△OMN的面積的最大值.

查看答案和解析>>

同步練習冊答案