下面命題中,真命題的(  )
A、?x∈R,3x2>x2
B、Vx∈R,2x>x2
C、a-b=0的充要條件是
a
b
=-1
D、a>1,b=1是ab>1的充分條件
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:通過舉反例可以排除A、B、C選項(xiàng),從而得出正確的答案.
解答: 解:對(duì)于A,當(dāng)x=0時(shí),3x2=x2=0,∴A是假命題;
對(duì)于B,當(dāng)x=2時(shí),2x=x2=4,∴B是假命題;
對(duì)于C,
a
b
=-1時(shí),a=-b,∴a+b=0,充分性不成立,
a-b=0時(shí),a=b,
a
b
=-1不一定成立,∴必要性不成立,∴C是假命題;
對(duì)于D,當(dāng)a>1,b=1時(shí),ab>1成立,∴充分性成立,是充分條件,∴D是真命題.
故選:D.
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì)與應(yīng)用的問題,也考查了充分與必要條件的判斷問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
5

(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.

(Ⅰ)如果X=8,求乙組同學(xué)植樹棵樹的平均數(shù)和方差;
(Ⅱ)如果X=7,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為17的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式:
(1)0<x2-x-2≤4;
(2)x2-4ax-5a2>0(a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過雙曲線
x2
16
-
y2
4
=1的右焦點(diǎn)且與雙曲線的右支交與A、B兩點(diǎn),|AB|=4,則A、B與雙曲線的左焦點(diǎn)所得三角形的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,已知PA⊥底面ABCD,PA=1,底面ABCD是正方形,PC與底面ABCD所成角的大小為
π
6
,則該四棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cos2(x+
π
12
)+sinxcosx,求:
(1)f(x)的最值;
(2)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
5
3+4i
的共軛復(fù)數(shù)為(  )
A、3-4i
B、3+4i
C、
3
5
-
4
5
i
D、
3
5
+
4
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用誘導(dǎo)公式求sin(x-
π
2
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案