12.已知集合M={x|x2>4},N={x|1<x<3},則N∩∁RM=(  )
A.{x|-2≤x<4}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}

分析 先求出集合M,N,再求出CRM,由此能求出N∩∁RM.

解答 解:∵集合M={x|x2>4}={x|x>2或x<-2},
N={x|1<x<3},
∴CRM={x|-2≤x≤2},
N∩∁RM={x|1<x≤2}.
故選:C.

點評 本題考查交集、補集的求法,是基礎(chǔ)題,解題時要認真審題,注意交集、補集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.|$\overrightarrow{a}$|=10,|$\overrightarrow$|=36,$\overrightarrow{a}$•$\overrightarrow$=-180,$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)數(shù)列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,$\sqrt{11}$,…,則$\sqrt{41}$是這個數(shù)列的第14項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=2,存在單位向量$\overrightarrow{e}$,使得($\overrightarrow{a}$-$\overrightarrow{e}$)•($\overrightarrow$-$\overrightarrow{e}$)=0,則|$\overrightarrow{a}$-$\overrightarrow$|的取值范圍是[$\sqrt{7}$-1,$\sqrt{7}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,B,E,F(xiàn)分別是AA1,CC1的中點,且BE⊥B1F.
(1)求證:B1F⊥EC1;
(2)求二面角C1-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上單調(diào)遞增,若對于任意x∈R,$f({{{log}_2}a})≤f({{x^2}-2x+2})$恒成立,則a的取值范圍是( 。
A.(0,1]B.$[{\frac{1}{2},2}]$C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某隧道截面如圖,其下部形狀是矩形ABCD,上部形狀是以CD為直徑的半圓.已知隧道的橫截面面積為4+π,設(shè)半圓的半徑OC=x,隧道橫截面的周長(即矩形三邊長與圓弧長之和)為f(x).
(1)求函數(shù)f(x)的解析式,并求其定義域;
(2)問當x等于多少時,f(x)有最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面向量$\overrightarrow{a}$=(4sin(π-α),$\frac{3}{2}$),$\overrightarrow{a}$=(cos$\frac{π}{3}$,cosα),$\overrightarrow{a}$⊥$\overrightarrow$.
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)(2+i)i的共軛復(fù)數(shù)的虛部是(  )
A.2B.-2C.2iD.-2i

查看答案和解析>>

同步練習(xí)冊答案