1.若log2x+log2y=2,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為( 。
A.1B.$\sqrt{2}$C.2D.4

分析 log2x+log2y=2,可得xy=4,x,y>0.再利用基本不等式的性質(zhì)即可得出.

解答 解:∵log2x+log2y=2,∴xy=4,x,y>0.
則$\frac{1}{x}$+$\frac{2}{y}$≥$2\sqrt{\frac{1}{x}•\frac{2}{y}}$=$\sqrt{2}$,當(dāng)且僅當(dāng)y=2x=2$\sqrt{2}$時(shí)取等號(hào).
故選:B.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的運(yùn)算性質(zhì)、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知y=f(x)是定義在 R 上的奇函數(shù),且y=f(x+$\frac{π}{2}$)為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述:
①y=f(x)是周期函數(shù);
②x=π是它的一條對(duì)稱軸;
③(-π,0)是它圖象的一個(gè)對(duì)稱中心;
④x=$\frac{π}{2}$是它的一條對(duì)稱軸. 
其中描述正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=ex-ax-1(x∈R)
(1)當(dāng)a>0時(shí)f(x)的單調(diào)區(qū)間.
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=$\frac{cosx}{{e}^{x}}$(其中e是自然對(duì)數(shù)的底數(shù),e=2.71828…)的導(dǎo)函數(shù)f′(x)為(  )
A.$f'(x)=\frac{sinx+cosx}{e^x}$B.$f'(x)=-\frac{sinx+cosx}{e^x}$
C.$f'(x)=\frac{sinx-cosx}{e^x}$D.$f'(x)=\frac{cosx-sinx}{e^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式-2x2+7x-3<0的解集為( 。
A.{x|$\frac{1}{2}$<x<3}B.{x|x<$\frac{1}{2}$或x>3}C.{x|-$\frac{1}{2}$<x<3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.△ABC在空間直角坐標(biāo)系中的位置及坐標(biāo)如圖所示,則AC邊上的中線長為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用根式的形式表示下列各式(a>0):
${a}^{\frac{1}{2}}$,${a}^{\frac{3}{4}}$,${a}^{-\frac{3}{5}}$,${a}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{b+c}{c}$.
(1)求角A的大;
(2)當(dāng)a=6時(shí),求△ABC面積的最大值,并指出面積最大時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=x3+18x+17sinx,若對(duì)任意的θ∈R,不等式f(asinθ+2)+f(1+2cos2θ)≥0恒成立,則a的取值范圍是-1≤a≤1.

查看答案和解析>>

同步練習(xí)冊(cè)答案